SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keys R) "

Sökning: WFRF:(Keys R)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Keys, Patrick W., et al. (författare)
  • Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 9:2, s. 733-746
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that rivers connect upstream and downstream ecosystems within watersheds. Here we describe the concept of precipitationsheds to show how upwind terrestrial evaporation source areas contribute moisture for precipitation to downwind sink regions. We illustrate the importance of upwind land cover in precipitationsheds to sustain precipitation in critically water stressed downwind areas, specifically dryland agricultural areas. We first identify seven regions where rainfed agriculture is particularly vulnerable to reductions in precipitation, and then map their precipitationsheds. We then develop a framework for qualitatively assessing the vulnerability of precipitation for these seven agricultural regions. We illustrate that the sink regions have varying degrees of vulnerability to changes in upwind evaporation rates depending on the extent of the precipitationshed, source region land use intensity and expected land cover changes in the source region.
  •  
6.
  • Keys, Patrick W., et al. (författare)
  • The dry sky : future scenarios for humanity's modification of the atmospheric water cycle
  • 2024
  • Ingår i: Global Sustainability. - 2059-4798. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-Technical Summary. Human societies are changing where and how water flows through the atmosphere. However, these changes in the atmospheric water cycle are not being managed, nor is there any real sense of where these changes might be headed in the future. Thus, we develop a new economic theory of atmospheric water management, and explore this theory using creative story-based scenarios. These scenarios reveal surprising possibilities for the future of atmospheric water management, ranging from a stock market for transpiration to on-demand weather. We discuss these story-based futures in the context of research and policy priorities in the present day.Technical Summary. Humanity is modifying the atmospheric water cycle, via land use, climate change, air pollution, and weather modification. Historically, atmospheric water was implicitly considered a ‘public good’ since it was neither actively consumed nor controlled. However, given anthropogenic changes, atmospheric water can become a ‘common-pool’ good (consumable) or a ‘club’ good (controllable). Moreover, advancements in weather modification presage water becoming a ‘private’ good, meaning both consumable and controllable. Given the implications, we designed a theoretical framing of atmospheric water as an economic good and used a combination of methods in order to explore possible future scenarios based on human modifications of the atmospheric water cycle. First, a systematic literature search of scholarly abstracts was used in a computational text analysis. Second, the output of the text analysis was matched to different parts of an existing economic goods framework. Then, a group of global water experts were trained and developed story-based scenarios. The resultant scenarios serve as creative investigations of the future of human modification of the atmospheric water cycle. We discuss how the scenarios can enhance anticipatory capacity in the context of both future research frontiers and potential policy pathways including transboundary governance, finance, and resource management.Social Media Summary. Story-based scenarios reveal novel future pathways for the management of the atmospheric water cycle.
  •  
7.
  • Keys, Patrick W., et al. (författare)
  • Variability of moisture recycling using a precipitationshed framework
  • 2014
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 18:10, s. 3937-3950
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has revealed that upwind land-use changes can significantly influence downwind precipitation. The precipitationshed (the upwind ocean and land surface that contributes evaporation to a specific location's precipitation) may provide a boundary for coordination and governance of these upwind-downwind water linkages. We aim to quantify the variability of the precipitationshed boundary to determine whether there are persistent and significant sources of evaporation for a given region's precipitation. We identify the precipitationsheds for three regions (i.e., western Sahel, northern China, and La Plata) by tracking atmospheric moisture with a numerical water transport model (Water Accounting Model-2layers, or WAM-2layers) using gridded fields from both the ERA-Interim (European Reanalysis Interim) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalyses. Precipitationshed variability is examined first by diagnosing the persistence of the evaporation contribution and second with an analysis of the spatial variability of the evaporation contribution. The analysis leads to three key conclusions: (1) a core precipitationshed exists; (2) most of the variance in the precipitationshed is explained by a pulsing of more or less evaporation from the core precipitationshed; and (3) the reanalysis data sets agree reasonably well, although the degree of agreement is regionally dependent. Given that much of the growing-season evaporation arises from within a core precipitationshed that is largely persistent in time, we conclude that the precipitationshed can potentially provide a useful boundary for governing land-use change on downwind precipitation.
  •  
8.
  • Spijkers, Jessica, et al. (författare)
  • Exploring the future of fishery conflict through narrative scenarios
  • 2021
  • Ingår i: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 4:3, s. 386-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest that the pervasive impacts on global fishery resources caused by stressors such as overfishing and climate change could dramatically increase the likelihood of fishery conflict. However, existing projections do not consider wider economic, social, or political trends when assessing the likelihood of, and influences on, future conflict trajectories. In this paper, we build four future fishery conflict scenarios by considering multiple fishery conflict drivers derived from an expert workshop, a longitudinal database of international fishery conflict, secondary data on conflict driver trends, and regional expert reviews. The scenarios take place between the years 2030 and 2060 in the North-East Atlantic (scramble for the Atlantic''), the East China Sea (the remodeled empire''), the coast of West Africa (oceanic decolonization''), and the Arctic (polar renaissance''). The scenarios explore the implications of ongoing trends in conflict-prone regions of the world and function as accessible, science-based communication tools that can help foster anticipatory governance capacity in the pursuit of future ocean security.
  •  
9.
  • van der Ent, R. J., et al. (författare)
  • Contrasting roles of interception and transpiration in the hydrological cycle - Part 2 : Moisture recycling
  • 2014
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 5:2, s. 471-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g. forest-to-cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy