SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kim Sung Won) ;lar1:(uu)"

Sökning: WFRF:(Kim Sung Won) > Uppsala universitet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, Min-Jeong, et al. (författare)
  • Intrinsic Seebeck coefficients of 2D polycrystalline PtSe2 semiconducting films through two-step annealing
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:11, s. 5714-5724
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the high contact resistance between a metal and a film, evaluating the intrinsic Seebeck coefficient of large-area two-dimensional (2D) semiconducting films with high-resistance is challenging. Here, we report a simple scheme to measure the large-area Seebeck coefficients of 2D polycrystalline platinum diselenide (PtSe2) thin films, whose electrical resistance (>2 M omega) is too high to measure the thermoelectric (TE) properties, by thermal annealing. As-prepared PtSe2 thin films deposited on sapphire substrates and treated by a two-step thermal annealing process at 574 K exhibited an intrinsic Seebeck coefficient > similar to 160 mu V K-1, which is 400% higher than that of the single-crystalline PtSe2 bulk, under a temperature gradient of up to 5 K along the samples. In addition, we confirm that the in-plane Seebeck coefficient of the two-step annealed samples was independent of the metal electrode. In addition, the role of thermal annealing in intrinsically-high-resistance 2D PtSe2 semiconducting films based on the atomic-scale crystallographic characteristics of these films and the measured contact resistance between the metal and PtSe2 layer is further discussed. Our finding represents an important achievement in understanding and measuring the Seebeck effect of high-TE-performance 2D layered transition metal dichalcogenide materials.
  •  
2.
  • An, Junghwa, et al. (författare)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009-30 November 2009
  • 2010
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 10:2, s. 404-408
  • Tidskriftsartikel (refereegranskat)abstract
    • This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.
  •  
3.
  • Choi, Jae Won, et al. (författare)
  • Interface-driven seebeck effect in two-dimensional trilayer-stacked PtTe2/MoS2/MoS2 heterostructures via electron-electron interactions
  • 2023
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 115
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) platinum telluride (PtTe2), which is one of the promising metallic transition metal dichalcogenides, has been proven as an essential candidate for electronic devices, magnetic devices, type-II Dirac fermions, topological superconductors, and other optoelectronic applications. However, the formation and thermal transport as important thermoelectric (TE) device applications have not been realized in large-area 2D PtTe2 films due to their semi-metallic properties. Here, we report an innovative approach to enhance the in-plane TE power factors by piling the metallic PtTe2 films on high-resistance (> 10 MO) intrinsic MoS2 films to form bilayer-PtTe2/MoS2 (5 nm/7 nm)//sapphire and trilayer-PtTe2/MoS2/MoS2 (5 nm/7 nm/7 nm)//sapphire heterostructures via wet-transfer stacking method. Such approaches can be achieved by utilizing 2D/2D heterostructure to increase the electron effective mass due to the strong electron-electron interaction at interface under temperature gradient along the samples and ultimately increase Seebeck coefficients via interface-driven Seebeck effect along with a metallic high-conductivity top-PtTe2 films. The trilayer-stacked PtTe2/MoS2/MoS2 heterostructures exhibit an extremely high Seebeck coefficient of 21.6 mu V/K and power factor of similar to 0.2 mW/m.K-2, which are 231 % and similar to 727 %, higher than those of the metallic 5-nm-thick single PtTe2 film on the sapphire substrate, respectively. Our new physics and observation can pave the way toward an effective strategy for understating 2D/2D TMDC heterostructure materials for high Fig.-of-merit TE energy harvesting devices.
  •  
4.
  • Kim, Yun-Ho, et al. (författare)
  • Barrier-free semimetallic PtSe2 contact formation in two-dimensional PtSe2/PtSe2 homostructure for high-performance field-effect transistors
  • 2023
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for low-resistance metal contacts on two-dimensional (2D) layered transition metal dichalcogenide (TMDC) materials for high-performance electronic devices remains challenging owing to the lack of interfacial bonding on the surface and a strong Fermi-level pinning effect. In this study, we demonstrate a high-performance 2D large-area homostructured PtSe2/PtSe2 field-effect transistor (FET) by introducing a Schottky-barrier-free and semimetallic PtSe2 film (top layer) as an ohmic contact to semiconducting 2D PtSe2 films (bottom layer) via the wet-transfer method. We successfully improved the current on/off ratio of homostructured 2D/2D PtSe2/PtSe2 FET by more than approximately twofold increase compared to the PtSe2 FET with Pt contacts owing to the barrier-free homojunction PtSe2 layer. Our finding represents a significant achievement in obtaining highperformance electronic devices with barrier-free contacts on homostructured PtSe2 FETs and paves the way toward a promising strategy for wafer-scale 2D TMDC electronic devices.
  •  
5.
  • Lee, Won-Yong, et al. (författare)
  • Abnormal Seebeck Effect in Vertically Stacked 2D/2D PtSe2/PtSe2 Homostructure
  • 2022
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 9:36
  • Tidskriftsartikel (refereegranskat)abstract
    • When a thermoelectric (TE) material is deposited with a secondary TE material, the total Seebeck coefficient of the stacked layer is generally represented by a parallel conductor model. Accordingly, when TE material layers of the same thickness are stacked vertically, the total Seebeck coefficient in the transverse direction may change in a single layer. Here, an abnormal Seebeck effect in a stacked two-dimensional (2D) PtSe2/PtSe2 homostructure film, i.e., an extra in-plane Seebeck voltage is produced by wet-transfer stacking at the interface between the PtSe2 layers under a transverse temperature gradient is reported. This abnormal Seebeck effect is referred to as the interfacial Seebeck effect in stacked PtSe2/PtSe2 homostructures. This effect is attributed to the carrier-interface interaction, and has independent characteristics in relation to carrier concentration. It is confirmed that the in-plane Seebeck coefficient increases as the number of stacked PtSe2 layers increase and observed a high Seebeck coefficient exceeding ≈188 µV K−1 at 300 K in a four-layer-stacked PtSe2/PtSe2 homostructure.
  •  
6.
  • Lee, Won-Yong, et al. (författare)
  • Alternatingly Stacked Low- and High-Resistance PtSe2/PtSe2 Homostructures Boost Thermoelectric Power Factors
  • 2023
  • Ingår i: Advanced Electronic Materials. - : John Wiley & Sons. - 2199-160X. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D transition-metal dichalcogenide (TMDC) materials are promising candidates with excellent thermoelectric (TE) properties owing to their low dimensionality in electronic and phonon transport. However, the considerable coupling of the Seebeck coefficient and electrical conductivity in such TE materials eventually results in the limit of the TE power factor increase, which severely hinders potential TE device applications. Herein, an alternative approach is demonstrated for breaking the strong coupling between the Seebeck coefficient and electrical conductivity in single TE materials by adopting a novel stacked PtSe2/PtSe2 homostructure. By alternately piling low-resistance (LR) PtSe2 (3 nm) onto high-resistance (HR) PtSe2 (2 nm) as one unit, the Seebeck coefficient and electrical conductivity of such stacked homostructures can be greatly enhanced with slightly improved electrical conductivity, ultimately resulting in a TE power factor in three-unit-stacked homostructures that is approximate to 1,648% higher than that of a single PtSe2 (15 nm) layer with the same thickness. This enhancement is attributed to an independent increase in the Seebeck coefficient, which depends on the interface among the LR and HR PtSe2 layers. The findings pave the way for a method that, unlike power factor optimization in conventional thermoelectric materials, can only utilize the Seebeck coefficient and electrical conductivity of each layer in a stacked homostructure.
  •  
7.
  • Choi, Jae Won, et al. (författare)
  • Observation of a Strong Decoupling Phenomenon in Pt/Si Hybrid Structures for In-Plane Thermoelectric Properties
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:40, s. 17283-17290
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of thermoelectric (TE) materials is limited by the intrinsic coupling of the Seebeck coefficient and the electrical conductivity such that an increase in one leads to a decrease in the other with respect to the carrier concentration. This coupling makes it particularly difficult to enhance the TE power factor in TE materials. In this study, we added a Pt top layer over a silicon wafer, forming a hybridized Pt/Si structure to drive a strong decoupling of the Seebeck coefficient and electrical conductivity. The results show that the electrical resistance in the Pt/Si hybrid structure decreased by ∼94 times compared to that of a single-layer lightly doped Si substrate at 300 K, while the Seebeck coefficient in the hybrid structure decreased slightly compared to that of the single layer. The remarkably high TE performance of the Pt/Si hybrid structure is brought about by the hybridization of the intrinsic high-conductivity Pt layer and the high-Seebeck coefficient Si substrate. In addition, we demonstrate that this novel and effective decoupling method enables the assessment of the in-plane intrinsic Seebeck coefficient of a lightly doped Si wafer, which typically has an electrical resistance that is extremely high to measure the Seebeck coefficient even with a high-resolution voltmeter. These results represent a significant advancement in the understanding of electrical transport in TE materials, which will invigorate further research on Si-based devices for realizing large-area watt-scale TE generation at room temperature.
  •  
8.
  • Kang, Min-Sung, et al. (författare)
  • Enhanced Transverse Seebeck Coefficients in 2D/2D PtSe2/MoS2 Heterostructures Using Wet-Transfer Stacking
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:46, s. 51881-51888
  • Tidskriftsartikel (refereegranskat)abstract
    • It is very challenging to estimate thermoelectric (TE) properties when applying millimeter-scale two-dimensional (2D) transition metal dichalcogenide (TMDC) materials to TE device applications, particularly their Seebeck coefficient due to their high intrinsic electrical resistance. This paper proposes an innovative approach to measure large transverse (i.e., in-plane) Seebeck coefficients for 2D TMDC materials by placing a low resistance (LR) semimetallic PtSe2 film on high-resistance (HR) semiconducting MoS2 (>10 M omega), whose internal resistance is too high to measure the Seebeck coefficient, forming a heterojunction structure using wet-transfer stacking. The vertically stacked LRPtSe2 (3 nm)/HR-MoS2 (12 nm) heterostructure film exhibits a high Seebeck coefficient > 190 mu V/K up to 5 K temperature difference. This unusual behavior can be explained by an additional Seebeck effect induced at the interface between the LR-2D/HR2D heterostructure. The proposed stacked LR-PtSe2/HR-MoS2 heterostructure film offers promising phenomena 2D/2D materials that enable innovative TE device applications.
  •  
9.
  • Ju, Jin Sung, et al. (författare)
  • A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide
  • 2006
  • Ingår i: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 177:3, s. 1838-1845
  • Tidskriftsartikel (refereegranskat)abstract
    • Determination of structures and functions of pattern recognition proteins are important for understanding pathogen recognition mechanisms in host defense and for elucidating the activation mechanism of innate immune reactions. In this study, a novel 40-kDa protein, named LPS recognition protein (LRP), was purified to homogeneity from the cell-free plasma of larvae of the large beetle, Holotrichia diomphalia. LRP exhibited agglutinating activities on Escherichia coli, but not on Staphylococcus aureus and Candida albicans. This E. coli-agglutinating activity was preferentially inhibited by the rough-type LPS with a complete core oligosaccharide. LRP consists of 317 aa residues and six repeats of an epidermal growth factor-like domain-Recombinant LRP expressed in a baculovirus system also showed E. coli agglutination activity in vitro and was able to neutralize LPS by inhibition of LPS-induced IL-6 production in mouse bone marrow mast cells. Furthermore, E. coli coated with the purified LRP were more rapidly cleared in the Holotrichia larvae than only E. coli, indicating that this protein participates in the clearance of E. coli in vivo. The three amino-terminal epidermal growth factor-like domains of LRP, but not the three carboxyl epidermal growth factor-like domains, are involved in the LPS-binding activity. Taken together, this LRP functions as a pattern recognition protein for LPS and plays a role as an innate immune protein.
  •  
10.
  • Mueller, Stefanie H., et al. (författare)
  • Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry
  • 2023
  • Ingår i: Genome Medicine. - : BioMed Central (BMC). - 1756-994X .- 1756-994X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes.Methods: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry.Results: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 x 10(-6)) and AC058822.1 (P = 1.47 x 10(-4)), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C.Conclusions: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 x 10(-5)), demonstrating the importance of diversifying study cohorts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy