SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klein C) ;srt2:(2020-2022);pers:(Bernhoff Hans)"

Sökning: WFRF:(Klein C) > (2020-2022) > Bernhoff Hans

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilar, J. A., et al. (författare)
  • Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)
  • 2021
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents the design of the Radio Neutrino Observatory Greenland (RNO-G) and discusses its scientific prospects. Using an array of radio sensors, RNO-G seeks to measure neutrinos above 10 PeV by exploiting the Askaryan effect in neutrino-induced cascades in ice. We discuss the experimental considerations that drive the design of RNO-G, present first measurements of the hardware that is to be deployed and discuss the projected sensitivity of the instrument. RNO-G will be the first production-scale radio detector for in-ice neutrino signals.
  •  
2.
  • Aguilar, J. A., et al. (författare)
  • Hardware Development for the Radio Neutrino Observatory in Greenland (RNO-G)
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • The Radio Neutrino Observatory in Greenland (RNO-G) is designed to make the first observations of ultra-high energy neutrinos at energies above 10 PeV, playing a unique role in multi-messenger astrophysics as the world's largest in-ice Askaryan radio detection array. The experiment will be composed of 35 autonomous stations deployed over a 5 x 6 km grid near NSF Summit Station in Greenland. The electronics chain of each station is optimized for sensitivity and low power, incorporating 150 - 600 MHz RF antennas at both the surface and in ice boreholes, low-noise amplifiers, custom RF-over-fiber systems, and an FPGA-based phased array trigger. Each station will consume 25 W of power, allowing for a live time of 70% from a solar power system. The communications system is composed of a high-bandwidth LTE network and an ultra-low power LoRaWAN network. I will also present on the calibration and DAQ systems, as well as status of the first deployment of 10 stations in Summer 2021.
  •  
3.
  • Aguilar, J. A., et al. (författare)
  • Reconstructing the neutrino energy for in-ice radio detectors
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Since summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) is searching for astrophysical neutrinos at energies > 10 PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an extensive simulation study that shows how RNO-G will be able to measure the energy of such particle cascades, which will in turn be used to estimate the energy of the incoming neutrino that caused them. The location of the neutrino interaction is determined using the differences in arrival times between channels and the electric field of the radio signal is reconstructed using a novel approach based on Information Field Theory. Based on these properties, the shower energy can be estimated. We show that this method can achieve an uncertainty of 13% on the logarithm of the shower energy after modest quality cuts and estimate how this can constrain the energy of the neutrino. The method presented in this paper is applicable to all similar radio neutrino detectors, such as the proposed radio array of IceCube-Gen2.
  •  
4.
  • Anker, A., et al. (författare)
  • A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :3
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary mission of the ARIANNA ultra-high energy neutrino telescope is to uncover astrophysical sources of neutrinos with energies greater than 10(16) eV. A pilot array, consisting of seven ARIANNA stations located on the surface of the Ross Ice Shelf in Antarctica, was commissioned in November 2014. We report on the search for astrophysical neutrinos using data collected between November 2014 and February 2019. A straight-forward template matching analysis yielded no neutrino candidates, with a signal efficiency of 79%. We find a 90% confidence upper limit on the diffuse neutrino flux of E-2 Phi = 1.7 x 10(-6) GeV cm(-2) s(-1) sr(-1) for a decade wide logarithmic bin centered at a neutrino energy of 10(18),eV, which is an order of magnitude improvement compared to the previous limit reported by the ARIANNA collaboration. The ARIANNA stations, including purpose built cosmic-ray stations at the Moore's Bay site and demonstrator stations at the South Pole, have operated reliably. Sustained operation at two distinct sites confirms that the flexible and adaptable architecture can be deployed in any deep ice, radio quiet environment. We show that the scientific capabilities, technical innovations, and logistical requirements of ARIANNA are sufficiently well understood to serve as the basis for large area radio-based neutrino telescope with a wide field-of-view.
  •  
5.
  • Anker, A., et al. (författare)
  • Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The sources of ultra-high energy (UHE) cosmic rays, which can have energies up to 10(20) eV, remain a mystery. UHE neutrinos may provide important clues to understanding the nature of cosmic-ray sources. ARIANNA aims to detect UHE neutrinos via radio (Askaryan) emission from particle showers when a neutrino interacts with ice, which is an efficient method for neutrinos with energies between 10(16) eV and 10(20) eV. The ARIANNA radio detectors are located in Antarctic ice just beneath the surface. Neutrino observation requires that radio pulses propagate to the antennas at the surface with minimum distortion by the ice and firn medium. Using the residual hole from the South Pole Ice Core Project, radio pulses were emitted from a transmitter located up to 1.7 km below the snow surface. By measuring these signals with an ARIANNA surface station, the angular and polarization reconstruction abilities are quantified, which are required to measure the direction of the neutrino. After deconvolving the raw signals for the detector response and attenuation from propagation through the ice, the signal pulses show no significant distortion and agree with a reference measurement of the emitter made in an anechoic chamber. Furthermore, the signal pulses reveal no significant birefringence for our tested geometry of mostly vertical ice propagation. The origin of the transmitted radio pulse was measured with an angular resolution of 0.37 degrees indicating that the neutrino direction can be determined with good precision if the polarization of the radio-pulse can be well determined. In the present study we obtained a resolution of the polarization vector of 2.7 degrees. Neither measurement show a significant offset relative to expectation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy