SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Knapp M) ;hsvcat:1"

Search: WFRF:(Knapp M) > Natural sciences

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Acharya, B. S., et al. (author)
  • Introducing the CTA concept
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Journal article (other academic/artistic)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (author)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • In: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Journal article (peer-reviewed)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  • Acharyya, A., et al. (author)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
5.
  • Grady, C., et al. (author)
  • The outer disks of Herbig stars from the UV to NIR
  • 2015
  • In: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 355:2, s. 253-266
  • Research review (peer-reviewed)abstract
    • Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.
  •  
6.
  • Akiyama, E., et al. (author)
  • DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 802:2
  • Journal article (peer-reviewed)abstract
    • We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0 ''.2 to 1 ''.5 (11-81 AU) and the PI image shows a clear axisymmetric depression in PI at similar to 0 ''.4 (similar to 20 AU) from the central star, similar to the similar to 80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0 ''.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structure may exist at similar to 20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
  •  
7.
  • Schoch, CL, et al. (author)
  • Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi
  • 2012
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:16, s. 6241-6246
  • Journal article (peer-reviewed)abstract
    • Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
  •  
8.
  • Mizuki, T., et al. (author)
  • Orbital Characterization of GJ1108A System, and Comparison of Dynamical Mass with Model-derived Mass for Resolved Binaries
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 865:2
  • Journal article (peer-reviewed)abstract
    • We report an orbital characterization of GJ1108Aab that is a low-mass binary system in the pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e = 0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm that the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (M-dynamical,M-GJ1108Aa= 0.72 +/- 0.04 M-circle dot and M-dynamical,M-GJ1108Ab = 0.30 +/- 0.03 M-circle dot) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider that the discrepancy in mass comparison can be attributed to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in the evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.
  •  
9.
  • Ahmadi, M., et al. (author)
  • Investigation of the fine structure of antihydrogen
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7795, s. 375-380
  • Journal article (peer-reviewed)abstract
    • At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system. Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.
  •  
10.
  • Ahmadi, M., et al. (author)
  • Observation of the 1S-2P Lyman-alpha transition in antihydrogen
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 561:7722, s. 211-217
  • Journal article (peer-reviewed)abstract
    • In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-alpha line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-alpha forest('3) of absorption lines at different redshifts. Here we report the observation of the Lyman-alpha transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 +/- 0.12 gigahertz (1 sigma uncertainty) and agrees with the prediction for hydrogen to a precision of 5 x 10(-8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter ;and antimatter. Alongside the ground-state hyperfine(4,5) and 1S-2S transitions(6,7) recently observed in antihydrogen, the Lyman-alpha transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50
Type of publication
journal article (47)
research review (2)
book chapter (1)
Type of content
peer-reviewed (48)
other academic/artistic (2)
Author/Editor
Takami, H. (8)
Lundgren, Edvin (7)
Yamada, T (6)
Henning, T. (6)
Knapp, Gillian R. (5)
Rundlöf, Maj (5)
show more...
Evans, A. (4)
Andersen, Jesper N (4)
van der Werf, D. P. (4)
Bertsche, W. (4)
Capra, A. (4)
Carruth, C. (4)
Cesar, C. L. (4)
Charlton, M. (4)
Eriksson, S. (4)
Evetts, N. (4)
Fajans, J. (4)
Friesen, T. (4)
Fujiwara, M. C. (4)
Gill, D. R. (4)
Hangst, J. S. (4)
Hardy, W. N. (4)
Hayden, M. E. (4)
Isaac, C. A. (4)
Jones, S. A. (4)
Jonsell, Svante (4)
Kurchaninov, L. (4)
Madsen, N. (4)
Maxwell, D. (4)
McKenna, J. T. K. (4)
Menary, S. (4)
Momose, T. (4)
Munich, J. J. (4)
Olchanski, K. (4)
Olin, A. (4)
Pusa, P. (4)
Robicheaux, F. (4)
Sacramento, R. L. (4)
Sameed, M. (4)
Sarid, E. (4)
Silveira, D. M. (4)
So, C. (4)
Tharp, T. D. (4)
Thompson, R. I. (4)
Wurtele, J. S. (4)
Baker, C. J. (4)
Collister, R. (4)
Johnson, M. A. (4)
Stutter, G. (4)
Jones, J. M. (4)
show less...
University
Stockholm University (20)
Lund University (19)
Uppsala University (7)
Linnaeus University (6)
University of Gothenburg (5)
Swedish University of Agricultural Sciences (5)
show more...
Royal Institute of Technology (4)
Karolinska Institutet (3)
Malmö University (2)
Södertörn University (2)
Chalmers University of Technology (2)
Swedish Museum of Natural History (2)
show less...
Language
English (50)
Research subject (UKÄ/SCB)
Agricultural Sciences (3)
Medical and Health Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view