SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knibbe Catherijne A.J.) srt2:(2018);mspu:(article)"

Sökning: WFRF:(Knibbe Catherijne A.J.) > (2018) > Tidskriftsartikel

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Rongen, Anne, et al. (författare)
  • Higher Midazolam Clearance in Obese Adolescents Compared with Morbidly Obese Adults
  • 2018
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 57:5, s. 601-611
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe clearance of cytochrome P450 (CYP) 3A substrates is reported to be reduced with lower age, inflammation and obesity. As it is unknown what the overall influence is of these factors in the case of obese adolescents vs. morbidly obese adults, we studied covariates influencing the clearance of the CYP3A substrate midazolam in a combined analysis of data from obese adolescents and morbidly obese adults.MethodsData from 19 obese adolescents [102.7 kg (62-149.5 kg)] and 20 morbidly obese adults [144 kg (112-186 kg)] receiving intravenous midazolam were analysed, using population pharmacokinetic modelling (NONMEM 7.2). In the covariate analysis, the influence of study group, age, total body weight (TBW), developmental weight (WTfor age and length) and excess body weight (WTexcess = TBW - WTfor age and length) was evaluated.ResultsThe population mean midazolam clearance was significantly higher in obese adolescents than in morbidly obese adults [0.71 (7%) vs. 0.44 (11%) L/min; p < 0.01]. Moreover, clearance in obese adolescents increased with TBW (p < 0.01), which seemed mainly explained by WTexcess, and for which a so-called 'excess weight' model scaling WTfor age and length to the power of 0.75 and a separate function for WTexcess was proposed.Discussion We hypothesise that higher midazolam clearance in obese adolescents is explained by less obesity-induced suppression of CYP3A activity, while the increase with WTexcess is explained by increased liver blood flow. The approach characterising the influence of obesity in the paediatric population we propose here may be of value for use in future studies in obese adolescents.
  •  
2.
  • Brussee, Janneke M., et al. (författare)
  • Characterization of Intestinal and Hepatic CYP3A-Mediated Metabolism of Midazolam in Children Using a Physiological Population Pharmacokinetic Modelling Approach
  • 2018
  • Ingår i: Pharmaceutical research. - : Springer. - 0724-8741 .- 1573-904X. ; 35:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Changes in drug absorption and first-pass metabolism have been reported throughout the pediatric age range. Our aim is to characterize both intestinal and hepatic CYP3A-mediated metabolism of midazolam in children in order to predict first-pass and systemic metabolism of CYP3A substrates. Methods Pharmacokinetic (PK) data of midazolam and 1-OH-midazolam from 264 post-operative children 1-18 years of age after oral administration were analyzed using a physiological population PK. modelling approach. In the model, consisting of physiological compartments representing the gastro-intestinal tract and liver,intrinsic intestinal and hepatic clearances were estimated to derive values for bioavailability and plasma clearance. Results The whole-organ intrinsic clearance in the gut wall and liver were found to increase with body weight, with a 105 (95% confidence interval (CI): 5-405) times lower intrinsic gut wall clearance than the intrinsic hepatic dearance (i.e. 5.08 L/h (relative standard error (RSE) 10%) versus 527 L/h (RSE 7%) for a 16 kg individual, respectively). When expressed per gram of organ, intrinsic clearance increases with increasing body weight in the gut wall, but decreases in the liver, indicating that CYP3A-mediated intrinsic clearance and local bioavailability in the gut wall and liver do not change with age in parallel. The resulting total bioavailability was found to be age-independent with a median of 20.8% in children (95%CI: 3.8-50.0%). Conclusion In conclusion, the intrinsic CYP3A-mediated gut wall clearance is substantially lower than the intrinsic hepatic CYP3A-mediated clearance in children from 1 to 18 years of age, and contributes less to the overall first-pass metabolism compared to adults.
  •  
3.
  • Brussee, Janneke M., et al. (författare)
  • First-Pass CYP3A-Mediated Metabolism of Midazolam in the Gut Wall and Liver in Preterm Neonates
  • 2018
  • Ingår i: CPT. - : WILEY. - 2163-8306. ; 7:6, s. 374-383
  • Tidskriftsartikel (refereegranskat)abstract
    • To predict first-pass and systemic cytochrome P450 (CYP) 3A-mediated metabolism of midazolam in preterm neonates, a physiological population pharmacokinetic model was developed describing intestinal and hepatic midazolam clearance in preterm infants. On the basis of midazolam and 1-OH-midazolam concentrations from 37 preterm neonates (gestational age 26-34 weeks) receiving midazolam orally and/or via a 30-minute intravenous infusion, intrinsic clearance in the gut wall and liver were found to be very low, with lower values in the gut wall (0.0196 and 6.7 L/h, respectively). This results in a highly variable and high total oral bioavailability of 92.1% (range, 67-95%) in preterm neonates, whereas this is around 30% in adults. This approach in which intestinal and hepatic clearance were separately estimated shows that the high bioavailability in preterm neonates is explained by, likely age-related, low CYP3A activity in the liver and even lower CYP3A activity in the gut wall.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy