SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knopp L) "

Sökning: WFRF:(Knopp L)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Fritsch, Daniel J., et al. (författare)
  • Experimental and Computational Study of 2D Smooth Wall Turbulent Boundary Layers in Pressure Gradient
  • 2022
  • Ingår i: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. - Reston, Virginia : American Institute of Aeronautics and Astronautics.
  • Konferensbidrag (refereegranskat)abstract
    • This paper describes a collaborative experimental and computational study of smooth wall boundary layers in a systematic family of favorable and adverse pressure gradients. The objective is to advance turbulence modeling of these flows, in particular the effects of pressure gradients that can be classified as non-equilibrium. This collaboration is a component of the larger NATO AVT-349 Research Task Group. Experiments under this effort are conducted at Virginia Tech and computational efforts are presented from Virginia Tech, the German Aerospace Center (DLR), the University of Melbourne, Chalmers University of Technology, the Maritime Research Institute Netherlands (MARIN) in conjunction with the University of Lisbon Instituto Superior Técnico (IST) (MARIN/IST), and the Sirehna Naval Group. This paper describes some of the key elements of the experimental and computational approaches, the efforts made for cross-discipline collaboration, verification, and validation, and reports on some initial results and findings. The agreement between various RANS solutions and RANS turbulence models and between RANS solutions and experiment are generally good, but questions remain as to the efficacy of RANS modeling for non-equilibrium boundary layer flows and some potential directions for future investigations are suggested.
  •  
4.
  • García-Mayoral, Ricardo, et al. (författare)
  • Modeling of high-Re, incompressible, non-equilibrium, rough-wall boundary layers for naval applications under NATO-AVT349
  • 2022
  • Ingår i: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. - Reston, Virginia : American Institute of Aeronautics and Astronautics.
  • Konferensbidrag (refereegranskat)abstract
    • This paper discusses the modeling activity of the NATO-STO Research Task Group AVT-349. The aim of this group is to improve the understanding and modeling of boundary layers in the complex flow around water vehicles. As such, the focus is on incompressible, high-Reynolds-number flows that can be subject to non-equilibrium conditions such as strong pressure gradients, three-dimensionality, and surface roughness and heterogeneity. The Task Group has identified a reduced number of simpler problems in which the above conditions can be studied separately and in controlled environments. These include two-dimensional rough-wall boundary layers under both zero and non-zero pressure gradients, two-dimensional smooth-wall boundary layers subject to pressure gradients, and boundary layers around smooth bodies of revolution and three-dimensional obstacles. An experimental and computational data set is being assembled for further analysis and insight into the flow mechanisms involved, as well as the shortcomings of state-of-the-art models. This paper gives an outlook of the modeling effort within the Task Group, as well its different objectives. These include predicting the effect of roughness in equilibrium conditions; assessing the applicability and/or extension of equilibrium models and predictions to non-equilibrium conditions, in particular when outer-layer similarity is lost; the development of near-wall models based on a reduced-order resolvent framework; and the use of machine-aided methods in closure models.
  •  
5.
  • Oldfors Hedberg, Carola, 1969, et al. (författare)
  • Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles
  • 2020
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:8, s. 2406-2420
  • Tidskriftsartikel (refereegranskat)abstract
    • The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy