SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korolczuk S.) "

Sökning: WFRF:(Korolczuk S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Tardocchi, M., et al. (författare)
  • High rate neutron and gamma ray spectroscopy of magnetic confinement fusion plasmas
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • An important instrumental development work has been done in the last two decades in the field of neutron and gamma ray spectroscopic measurements of magnetic confinement plasmas. Starting from the present state of the art instrumentation installed at JET, this paper reviews the recent development that has been carried out within the EUROFUSION programme for the forthcoming high power JET D and DT campaign. This development was dedicated to the realization of new compact neutron and gamma-ray spectrometers which combine very high energy resolution (typically better than 5%) and MHz counting rate capabilities allowing for time resolution in the 10 ms time scale. One of the advantages offered by the compact dimensions of these spectrometers is to make possible their use in multiple sight-line camera configurations, such as for future burning plasma reactors (ITER and DEMO). New compact neutron spectrometers based on single crystal diamond detectors have been developed and installed at JET for measurements of the 14MeV neutron spectrum. Measurements on a portable DT neutron generator have shown that neutron spectroscopy of the accelerated beam ions at unprecedented energy resolution (similar to 1% at 14 MeV) is possible, which opens up new opportunities for diagnosing DT plasmas. For what concerns gamma ray measurements, the JET gamma ray camera has been recently upgraded with new compact spectrometers based on a LaBr3 scintillator coupled to Silicon Photomultiplier with the dual aim to improve the spectroscopic and rate capabilities of the detectors. The upgrade camera system will reconstruct the spatial gamma ray emissivity from the plasma in the MeV energy range at MHz counting rates and energy resolution in the 2-4% range. This will allow physics studies of gamma rays produced by the interaction of fast ions with impurities in the plasma and bremsstrahlung emission from runaway electrons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy