SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koskinen S) ;lar1:(kth)"

Sökning: WFRF:(Koskinen S) > Kungliga Tekniska Högskolan

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
2.
  •  
3.
  • Alagic, Z., et al. (författare)
  • Ultra-low-dose CT for extremities in an acute setting : initial experience with 203 subjects
  • 2020
  • Ingår i: Skeletal Radiology. - : Springer Nature. - 0364-2348 .- 1432-2161. ; 49:4, s. 531-539
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveThe purpose of this study was to assess if ultra-low-dose CT is a useful clinical alternative to digital radiographs in the evaluation of acute wrist and ankle fractures.Materials and methodsAn ultra-low-dose protocol was designed on a 256-slice multi-detector CT. Patients from the emergency department were evaluated prospectively. After initial digital radiographs, an ultra-low-dose CT was performed. Two readers independently analyzed the images. Also, the radiation dose, examination time, and time to preliminary report was compared between digital radiographs and CT.ResultsIn 207 extremities, digital radiography and ultra-low-dose CT detected 73 and 109 fractures, respectively (p < 0.001). The odds ratio for fracture detection with ultra-low-dose CT vs. digital radiography was 2.0 (95% CI, 1.4–3.0). CT detected additional fracture-related findings in 33 cases (15.9%) and confirmed or ruled out suspected fractures in 19 cases (9.2%). The mean effective dose was comparable between ultra-low-dose CT and digital radiography (0.59 ± 0.33 μSv, 95% CI 0.47–0.59 vs. 0.53 ± 0.43 μSv, 95% CI 0.54–0.64). The mean combined examination time plus time to preliminary report was shorter for ultra-low-dose CT compared to digital radiography (7.6 ± 2.5 min, 95% CI 7.1–8.1 vs. 9.8 ± 4.7 min, 95% CI 8.8–10.7) (p = 0.002). The recommended treatment changed in 34 (16.4%) extremities.ConclusionsUltra-low-dose CT is a useful alternative to digital radiography for imaging the peripheral skeleton in the acute setting as it detects significantly more fractures and provides additional clinically important information, at a comparable radiation dose. It also provides faster combined examination and reporting times.
  •  
4.
  • Horbury, T., et al. (författare)
  • Cross-scale : A multi-spacecraft mission to study cross-scale coupling in space plasmas
  • 2006
  • Ingår i: European Space Agency, (Special Publication) ESA SP. ; , s. 561-568
  • Konferensbidrag (refereegranskat)abstract
    • Collisionless astrophysical plasmas exhibit complexity on many scales: if we are to understand their properties and effects, we must measure this complexity. We can identify a small number of processes and phenomena, one of which is dominant in almost every space plasma region of interest: shocks, reconnection and turbulence. These processes act to transfer energy between locations, scales and modes. However, this transfer is characterised by variability and 3D structure on at least three scales: electron kinetic, ion kinetic and fluid. It is the nonlinear interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects. However, current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time - we must measure the three scales simultaneously fully to understand the energy transfer processes. We propose a mission, called Cross-Scale, to study these processes. Cross-Scale would comprise three nested groups, each consisting of up to four spacecraft. Each group would have a different spacecraft separation, at approximately the electron and ion gyroradii, and a larger MHD scale. We would therefore be able to measure variations on all three important physical scales, simultaneously, for the first time. The spacecraft would fly in formation through key regions of near-Earth space: The solar wind, bowshock, magnetosheath, magnetopause and magnetotail.
  •  
5.
  • Suomalainen, S., et al. (författare)
  • Semiconductor saturable absorbers with recovery time controlled by lattice mismatch and band-gap engineering
  • 2008
  • Ingår i: Materials Science & Engineering. - : Elsevier BV. - 0921-5107 .- 1873-4944. ; 147:2-3, s. 156-160
  • Tidskriftsartikel (refereegranskat)abstract
    • The recovery time of absorption in semiconductor quantum-well structures is one of the key parameters that determines the performance of pulsed lasers mode-locked or Q-switched by semiconductor saturable absorbers. In this paper we discuss new methods to control the recovery time of absorption. The first method is based on controlling the crystalline quality of the absorbing material and thus the density of non-radiative recombination centers that are responsible for the fast recovery of the absorption. With this technique, we were able to fabricate semiconductor saturable absorber mirrors (SESAMs) with recovery times of about 4.5 ps at 1 mu m and 40 ps at 1.55 mu m. Another approach that we propose and demonstrate in this paper is based on band-gap engineering that enables short recovery times to be achieved through fast relaxation of excited photocarriers via intraband scattering. A 24 ps carrier decay time was achieved by placing deep quantum-wells next to the shallow quantum-wells responsible for the nonlinear absorption. We demonstrated that the recovery time can be changed by modifying the thickness of the deep and shallow quantum-wells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy