SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kote Jarai Z) ;hsvcat:3"

Sökning: WFRF:(Kote Jarai Z) > Medicin och hälsovetenskap

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Dadaev, T, et al. (författare)
  • Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2256-
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  •  
3.
  •  
4.
  • FitzGerald, L. M., et al. (författare)
  • Germline variants in IL4, MGMT and AKT1 are associated with prostate cancer-specific mortality : an analysis of 12,082 prostate cancer cases
  • 2018
  • Ingår i: Prostate Cancer and Prostatic Diseases. - : Nature Publishing Group. - 1365-7852 .- 1476-5608. ; 21:2, s. 228-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Prostate cancer (PCa) is a leading cause of mortality and genetic factors can influence tumour aggressiveness. Several germline variants have been associated with PCa-specific mortality (PCSM), but further replication evidence is needed. Methods Twenty-two previously identified PCSM-associated genetic variants were genotyped in seven PCa cohorts (12,082 patients; 1544 PCa deaths). For each cohort, Cox proportional hazards models were used to calculate hazard ratios and 95% confidence intervals for risk of PCSM associated with each variant. Data were then combined using a meta-analysis approach. Results Fifteen SNPs were associated with PCSM in at least one of the seven cohorts. In the meta-analysis, after adjustment for clinicopathological factors, variants in the MGMT (rs2308327; HR 0.90; p-value = 3.5 x 10(-2)) and IL4 (rs2070874; HR 1.22; p-value = 1.1 x 10(-3)) genes were confirmed to be associated with risk of PCSM. In analyses limited to men diagnosed with local or regional stage disease, a variant in AKT1, rs2494750, was also confirmed to be associated with PCSM risk (HR 0.81; p-value = 3.6 x 10(-2)). Conclusions This meta-analysis confirms the association of three genetic variants with risk of PCSM, providing further evidence that genetic background plays a role in PCa-specific survival. While these variants alone are not sufficient as prognostic biomarkers, these results may provide insights into the biological pathways modulating tumour aggressiveness.
  •  
5.
  •  
6.
  • Jiang, X., et al. (författare)
  • Shared heritability and functional enrichment across six solid cancers
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.
  •  
7.
  •  
8.
  •  
9.
  • Cremers, Ruben G., et al. (författare)
  • The role of the prostate cancer gene 3 urine test in addition to serum prostate-specific antigen level in prostate cancer screening among breast cancer, early-onset gene mutation carriers
  • 2015
  • Ingår i: Urologic Oncology: Seminars and Original Investigations. - : Elsevier BV. - 1078-1439. ; 33:5, s. 19-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To evaluate the additive value of the prostate cancer gene 3 (PCA3) urine test to serum prostate-specific antigen (PSA) in prostate cancer (PC) screening among breast cancer, early-onset gene (BRCA) mutation carriers. This study was performed among the Dutch participants of IMPACT, a large international study on the effectiveness of PSA screening among BRCA mutation carriers. Materials and methods: Urinary PCA3 was measured in 191 BRCA1 mutation carriers, 75 BRCA2 mutation carriers, and 308 noncarriers. The physicians and participants were blinded for the results. Serum PSA level≥3.0. ng/ml was used to indicate prostate biopsies. PCA3 was evaluated (1) as an independent indicator for prostate biopsies and (2) as an indicator for prostate biopsies among men with an elevated PSA level. PC detected up to the 2-year screening was used as gold standard as end-of-study biopsies were not performed. Results: Overall, 23 PCs were diagnosed, 20 of which were in men who had an elevated PSA level in the initial screening round. (1) PCA3, successfully determined in 552 participants, was elevated in 188 (cutoff≥25; 34%) or 134 (cutoff≥35; 24%) participants, including 2 of the 3 PCs missed by PSA. PCA3 would have added 157 (≥25; 28%) or 109 (≥35; 20%) biopsy sessions to screening with PSA only. (2) Elevated PCA3 as a requirement for biopsies in addition to PSA would have saved 37 (cutoff≥25) or 43 (cutoff≥35) of the 68 biopsy sessions, and 7 or 11 PCs would have been missed, respectively, including multiple high-risk PCs. So far, PCA3 performed best among BRCA2 mutation carriers, but the numbers are still small. Because PCA3 was not used to indicate prostate biopsies, its true diagnostic value cannot be calculated. Conclusions: The results do not provide evidence for PCA3 as a useful additional indicator of prostate biopsies in BRCA mutation carriers, as many participants had an elevated PCA3 in the absence of PC. This must be interpreted with caution because PCA3 was not used to indicate biopsies. Many participants diagnosed with PC had low PCA3, making it invalid as a restrictive marker for prostate biopsies in men with elevated PSA levels.
  •  
10.
  • Huynh-Le, MP, et al. (författare)
  • Polygenic hazard score is associated with prostate cancer in multi-ethnic populations
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 1236-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10−180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy