SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kravic Jasmina) "

Sökning: WFRF:(Kravic Jasmina)

  • Resultat 1-10 av 20
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
2.
  • Gaulton, Kyle J., et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:12, s. 1415-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
3.
  • Mahajan, Anubha, et al. (författare)
  • Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:3, s. 234-234
  • Tidskriftsartikel (refereegranskat)abstract
    • To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
  •  
4.
  • Morris, Andrew P., et al. (författare)
  • Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
  • 2012
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 44:9, s. 981-981
  • Tidskriftsartikel (refereegranskat)abstract
    • To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genomewide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.
  •  
5.
  •  
6.
  • Di Camillo, Barbara, et al. (författare)
  • HAPT2D : high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability
  • 2018
  • Ingår i: European Journal of Endocrinology. - : Society of the European Journal of Endocrinology. - 1479-683X. ; 178:4, s. 331-341
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Type 2 diabetes arises from the interaction of physiological and lifestyle risk factors. Our objective was to develop a model for predicting the risk of T2D, which could use various amounts of background information.RESEARCH DESIGN AND METHODS: We trained a survival analysis model on 8483 people from three large Finnish and Spanish data sets, to predict the time until incident T2D. All studies included anthropometric data, fasting laboratory values, an oral glucose tolerance test (OGTT) and information on co-morbidities and lifestyle habits. The variables were grouped into three sets reflecting different degrees of information availability. Scenario 1 included background and anthropometric information; Scenario 2 added routine laboratory tests; Scenario 3 also added results from an OGTT. Predictive performance of these models was compared with FINDRISC and Framingham risk scores.RESULTS: The three models predicted T2D risk with an average integrated area under the ROC curve equal to 0.83, 0.87 and 0.90, respectively, compared with 0.80 and 0.75 obtained using the FINDRISC and Framingham risk scores. The results were validated on two independent cohorts. Glucose values and particularly 2-h glucose during OGTT (2h-PG) had highest predictive value. Smoking, marital and professional status, waist circumference, blood pressure, age and gender were also predictive.CONCLUSIONS: Our models provide an estimation of patient's risk over time and outweigh FINDRISC and Framingham traditional scores for prediction of T2D risk. Of note, the models developed in Scenarios 1 and 2, only exploited variables easily available at general patient visits.
  •  
7.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
8.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
9.
  • Flannick, Jason, et al. (författare)
  • Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to 82 K Europeans via the exome chip, and similar to 90% of low-frequency non-coding variants in similar to 44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
10.
  • Guey, Lin T., et al. (författare)
  • Power in the Phenotypic Extremes: A Simulation Study of Power in Discovery and Replication of Rare Variants
  • 2011
  • Ingår i: Genetic Epidemiology. - : John Wiley and Sons. - 0741-0395. ; 35:4, s. 236-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover rare variants, they have limited power to associate them to phenotype-suggesting high false-negative rates for upcoming studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power; extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35: 236-246, 2011. (c) 2011 Wiley-Liss, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
  • [1]2Nästa
Typ av publikation
tidskriftsartikel (17)
konferensbidrag (3)
Typ av innehåll
refereegranskat (20)
Författare/redaktör
Kravic, Jasmina (20)
Tuomi, Tiinamaija (15)
Groop, Leif (15)
McCarthy, Mark I (13)
Mohlke, Karen L (12)
Tuomilehto, Jaakko (12)
visa fler...
Morris, Andrew P (12)
Lindgren, Cecilia M. (12)
Isomaa, Bo (11)
Altshuler, David (11)
Voight, Benjamin F. (11)
Stringham, Heather M ... (11)
Lyssenko, Valeriya (10)
Melander, Olle (10)
Wareham, Nicholas J (10)
Hattersley, Andrew T (10)
Morris, Andrew D (10)
Meigs, James B. (10)
Wood, Andrew R (10)
Frayling, Timothy M (10)
Collins, Francis S. (10)
Florez, Jose C. (10)
Salomaa, Veikko (9)
Lind, Lars (9)
Stancáková, Alena (9)
Laakso, Markku (9)
Boehnke, Michael (9)
Scott, Robert A (9)
Barroso, Ines (9)
Froguel, Philippe (9)
Loos, Ruth J F (9)
Mahajan, Anubha (9)
Dupuis, Josée (9)
Perry, John R. B. (9)
Jackson, Anne U. (9)
Rauramaa, Rainer (9)
Bonnycastle, Lori L. (9)
Chines, Peter S. (9)
Scott, Laura J (9)
Kuusisto, Johanna (8)
Hu, Frank B. (8)
Langenberg, Claudia (8)
Ingelsson, Erik (8)
Peters, Annette (8)
Metspalu, Andres (8)
Palmer, Colin N. A. (8)
Grallert, Harald (8)
Zeggini, Eleftheria (8)
Thorand, Barbara (8)
Yengo, Loic (8)
visa färre...
Lärosäte
Lunds universitet (16)
Umeå universitet (5)
Uppsala universitet (5)
Högskolan Kristianstad (1)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Naturvetenskap (2)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy