SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kruger U) ;hsvcat:2"

Sökning: WFRF:(Kruger U) > Teknik

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
2.
  • Allahgholi, A., et al. (författare)
  • AGIPD 1.0 : The high-speed high dynamic range readout ASIC for the adaptive gain integrating pixel detector at the European XFEL
  • 2014
  • Ingår i: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781479960972
  • Konferensbidrag (refereegranskat)abstract
    • AGIPD is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institute (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 104 × 12.4 keV photons, achieved by the use of dynamic gain switching, auto-selecting one of 3 gains of the charge sensitive pre-amplifier. To cope with the unique features of the European XFEL source, image data is stored in 352 analogue memory cells per pixel. The selected gain is stored in the same way and depth, encoded as one of 3 voltage levels. These memories are operated in random-access mode at 4.5MHz frame rate. Data is read out on a row-by-row basis via multiplexers to the DAQ system for digitisation during the 99.4ms gap between the bunch trains of the European XFEL. The AGIPD 1.0 ASIC features 64×64 pixels with a pixel area of 200×200 μm2. It is bump-bonded to a 500 μm thick silicon sensor. The principles of the chip architecture were proven in different experiments and the ASIC characterization was performed with a series of development prototypes. The mechanical concept of the detector system was developed in close contact with the XFEL beamline scientists to ensure a seamless integration into the beamline setup and is currently being manufactured. The first single module system was successfully tested at APS1 the high dynamic range allows imaging of the direct synchrotron beam along with single photon sensitivity and burst imaging of 352 subsequent frames synchronized to the source.
  •  
3.
  • Allahgholi, A., et al. (författare)
  • The AGIPD 1.0 ASIC : Random access high frame rate, high dynamic range X-ray camera readout for the European XFEL
  • 2015
  • Ingår i: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Konferensbidrag (refereegranskat)abstract
    • The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-Ray pulses are repeated at 10 Hz. The pulses inside the train are spaced by 220 ns and each one contains up to 1012 photons of 12.4 keV, while being ≤ 100 fs in length. AGIPD (Adaptive Gain Integrating Pixel Detector) is a hybrid 1M-pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. Thus the readout ASIC has to provide not only single photon sensitivity and a dynamic range ≳ 104 photons/pixel in the same image but also a memory for as many images of a pulse train as possible for delayed readout prior to the next train. The AGIPD 1.0 ASIC uses a 130 nm CMOS technology and radiation tolerant techniques to withstand the radiation damage incurred by the high impinging photon flux. Each ASIC contains 64 × 64 pixels of 200μmχ200μm. The circuit of each pixel contains a charge sensitive preamplifier with threefold switchable gain, a discriminator for an adaptive gain selection, and a correlated double sampling (CDS) stage to remove reset and low-frequency noise components. The output of the CDS, as well as the dynamically selected gain is sampled in a capacitor-based analogue memory for 352 samples, which occupies about 80% of a pixels area. For readout each pixel features a charge sensitive buffer. A control circuit with a command based interface provides random access to the memory and controls the row-wise readout of the data via multiplexers to four differential analogue ports. The AGIPD 1.0 full scale ASIC has been received back from the foundry in fall of 2013. Since then it has been extensively characterised also with a sensor as a single chip and in 2 × 8-chip modules for the AGIPD 1 Mpix detector. We present the design of the AGIPD 1.0 ASIC along with supporting results, also from beam tests at PETRA III and APS, and show changes incorporated in the recently taped out AGIPD 1.1 ASIC upgrade.
  •  
4.
  • Becker, J., et al. (författare)
  • High speed cameras for X-rays : AGIPD and others
  • 2013
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 8:1, s. Art. no. C01042-
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments at high pulse rate Free Electron Laser (FEL) facilities require new cameras capable of acquiring 2D images at high rates, handling large signal dynamic ranges and resolving images from individual pulses. The Adaptive Gain Integrated Pixel Detector (AGIPD) will operated with pulse rates and separations of 27000/s and 220 ns, respectively at European XFEL. Si-sensors, ASICs, PCBs, and FPGA logic are developed for a 1 Mega-pixel camera with 200 μm square pixels with per-pulse occupancies 104. Data from 3520 images/s will be transferred with 80 Gbits/s to a DAQ-system. The electronics have been adapted for use in other synchrotron light source detectors. 
  •  
5.
  • Becker, J., et al. (författare)
  • The high speed, high dynamic range camera AGIPD
  • 2013
  • Ingår i: IEEE Nuclear Science Symposium Conference Record. - : IEEE conference proceedings. - 9781479905348 ; , s. Art. no. 6829504-
  • Konferensbidrag (refereegranskat)abstract
    • The European X-Ray Free Electron Laser (XFEL) will provide ultra short, highly coherent X-ray pulses which will revolutionize scientific experiments in a variety of disciplines spanning physics, chemistry, materials science, and biology. One of the differences between the European XFEL and other free electron laser sources is the high pulse frequency of 4.5 MHz. The European XFEL will provide pulse trains, consisting of up to 2700 pulses separated by 220 ns (600 μs in total) followed by an idle time of 99.4 ms, resulting in a supercycle of 10 Hz. Dedicated fast 2D detectors are being developed, one of which is the Adaptive Gain Integrating Pixel Detector (AGIPD). AGIPD is based on the hybrid pixel technology. The design goals of the recently produced, radiation hard Application Specific Integrated Circuit (ASIC) with dynamic gain switching amplifiers are (for each pixel) a dynamic range of more than 10 4 12.4 keV photons in the lowest gain, single photon sensitivity in the highest gain, an analog memory capable of storing 352 images, and operation at 4.5 MHz frame rate. A vetoing scheme allows to maximize the number of useful images that are acquired by providing the possibility to overwrite any previously recorded image during the pulse train. The AGIPD will feature a pixel size of (200 μm)2 and a silicon sensor with a thickness of 500 μm. The image data is read out and digitized between pulse trains. © 2013 IEEE.
  •  
6.
  • Greiffenberg, D., et al. (författare)
  • Optimization of the noise performance of the AGIPD prototype chips
  • 2013
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 8:10, s. Art. no. P10022-
  • Tidskriftsartikel (refereegranskat)abstract
    • The charge integrating readout electronics AGIPD (adaptive gain integrating pixel detector) is a hybrid detector system developed for the European XFEL. It features a threefold dynamic gain switching to be able to resolve single photons and to cover a dynamic range of 104·12.4 keV photons. As a result of dynamic gain switching, single photon resolution will be achieved in the high gain stage, while the maximum dynamic range will be reached in the low gain stage. The specification to resolve single photons requires a signal-over-noise ratio of at least 10 for a single incoming photon with an energy of 12.4 keV. When using a silicon sensor, that translates to an equivalent noise charge of less than 343 e-. Several AGIPD prototype chips have been designed and characterized, particularly focusing on the noise performance. During the testing phase, the dominant noise sources were identified and the corresponding circuit blocks were improved in the subsequent ASICs. This paper reports on the procedures to identify the dominating noise sources, the optimization process of the circuit blocks and discusses the effect of the optimization on the noise performance.© 2013 IOP Publishing Ltd and Sissa Medialab srl.
  •  
7.
  • Greiffenberg, D., et al. (författare)
  • Towards AGIPD1.0 : Optimization of the dynamic range and investigation of a pixel input protection
  • 2014
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 9:6, s. Art. no. P06001-
  • Tidskriftsartikel (refereegranskat)abstract
    • AGIPD is a charge integrating, hybrid pixel readout ASIC, which is under development for the European XFEL [1,2]. A dynamic gain switching logic at the output of the preamplifier (preamp) is used to provide single photon resolution as well as covering a dynamic range of at least 104·12.4 keV photons [3,4]. Moreover, at each point of the dynamic range the electronics noise should be lower than the Poisson fluctuations, which is especially challenging at the points of gain switching. This paper reports on the progress of the chip design on the way to the first full-scale chip AGIPD1.0, focusing on the optimization of the dynamic range and the implementation of protection circuits at the preamplifier input to avoid pixel destruction due to high intense spots. © 2014 IOP Publishing Ltd and Sissa Medialab srl.
  •  
8.
  • Ostrovskis, A., et al. (författare)
  • 106.25 Gbaud On-Off Keying and Pulse Amplitude Modulation Links Supporting Next Generation Ethernet on Single Lambda
  • 2023
  • Ingår i: Journal of Lightwave Technology. - 0733-8724 .- 1558-2213.
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of Data Center based computing technology require energy efficient high-speed transmission links. This leads to optical amplification-free intensity modulation and direct detection (IM/DD) systems with low complexity equalization compliant with IEEE standardized electrical interfaces. Switching from on-off keying to multi-level pulse amplitude modulation would allow to reduce lane count for next generation Ethernet interfaces. We characterize 106.25 Gbaud on-off keying, 4-level and 6-level pulse amplitude modulation links using two integrated transmitters: O-band directly modulated laser and C-band externally modulated laser. Simple feed forward or decision feedback equalizer is used. We demonstrate 106.25 Gbaud on-off keying links operating without forward error correction for both transmitters. We also show 106.25 Gbaud 4-level and 6-level pulse amplitude modulation links with performance below 6.25% overhead hard-decision forward error threshold of 4.5×10-3. Furthermore, for EML-based transmitter we achieve 106.25 Gbaud 4-level pulse amplitude modulation performance below KP-FEC threshold of 2.2×10-4. That shows that we can use optics to support (2x)100 Gbps Ethernet on single lambda at expense of simple forward error correction.
  •  
9.
  • Krüger, Markus, et al. (författare)
  • Impact-Echo-techniques for Crack Depth Measurement : Sustainable Bridges Background document D3.7
  • 2007
  • Rapport (refereegranskat)abstract
    • A new concept for impact-echo testing systems is developed in this workpackage, includinga new device, small and easy to handle, robust and unproblematic regarding transportation. The system utilizes advanced impact generation for fast scanning techniques and reproducible impacts. The data acquisition, filtering and visualization of data are optimized for the inspection of large structures obtaining data at many measurement points. Regarding the software state-of-the-art requirements were implemented for both, scientific applications and field-tests. A new feature is the semiautomatic estimation of crack parameters like crack depth. The main objective of the work done in this project was to provide a quick and reliable measurement method for the detection and characterization of vertical cracks in combination with the detection of delaminations, honeycombing etc. in concrete bridges.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy