SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krygowska Wajs A) "

Sökning: WFRF:(Krygowska Wajs A)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Soto-Ortolaza, A. I., et al. (författare)
  • GWAS risk factors in Parkinson's disease: LRRK2 coding variation and genetic interaction with PARK16
  • 2013
  • Ingår i: American Journal of Neurodegenerative Disease. - : e-Century Publishing. - 2165-591X. ; 2:4, s. 99-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a multifactorial movement disorder characterized by progressive neurodegeneration. Genome-wide association studies (GWAS) have nominated over fifteen distinct loci associated with risk of PD, however the biological mechanisms by which these loci influence disease risk are mostly unknown. GWAS are only the first step in the identification of disease genes: the specific causal variants responsible for the risk within the associated loci and the interactions between them must be identified to fully comprehend their impact on the development of PD. In the present study, we first attempted to replicate the association signals of 17 PD GWAS loci in our series of 1381 patients with PD and 1328 controls. BST1, SNCA, HLA-DRA, CCDC62/HIP1R and MAPT all showed a significant association with PD under different models of inheritance and LRRK2 showed a suggestive association. We then examined the role of coding LRRK2 variants in the GWAS association signal for that gene. The previously identified LRRK2 risk mutant p.M1646T and protective haplotype p.N551K-R1398H-K1423K did not explain the association signal of LRRK2 in our series. Finally, we investigated the gene-gene interaction between PARK16 and LRRK2 that has previously been proposed. We observed no interaction between PARK16 and LRRK2 GWAS variants, but did observe a non-significant trend toward interaction between PARK16 and LRRK2 variants within the protective haplotype. Identification of causal variants and the interactions between them is the crucial next step in making biological sense of the massive amount of data generated by GWAS studies. Future studies combining larger sample sizes will undoubtedly shed light on the complex molecular interplay leading to the development of PD.
  •  
4.
  • Vilarino-Gueell, Carles, et al. (författare)
  • VPS35 Mutations in Parkinson Disease
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297. ; 89:1, s. 162-167
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 +/- 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
  •  
5.
  • Labbé, Catherine, et al. (författare)
  • Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies.
  • 2015
  • Ingår i: Neurology. - : Lippincott Williams & Wilkins. - 1526-632X. ; 85:19, s. 1680-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective:To assess the importance of MAPT variant p.A152T in the risk of synucleinopathies. Methods:In this case-control study, we screened a large global series of patients and controls, and assessed associations between p.A152T and disease risk. We included 3,229 patients with clinical Parkinson disease (PD), 442 with clinical dementia with Lewy bodies (DLB), 181 with multiple system atrophy (MSA), 832 with pathologically confirmed Lewy body disease (LBD), and 2,456 healthy controls. Results:The minor allele frequencies (MAF) in clinical PD cases (0.28%) and in controls (0.2%) were not found to be significantly different (odds ratio [OR] 1.37, 95% confidence interval [CI] 0.63-2.98, p = 0.42). However, a significant association was observed with clinical DLB (MAF 0.68%, OR 5.76, 95% CI 1.62-20.51, p = 0.007) and LBD (MAF 0.42%, OR 3.55, 95% CI 1.04-12.17, p = 0.04). Additionally, p.A152T was more common in patients with MSA compared to controls (MAF 0.55%, OR 4.68, 95% CI 0.85-25.72, p = 0.08) but this was not statistically significant and therefore should be interpreted with caution. Conclusions:Overall, our findings suggest that MAPT p.A152T is a rare low penetrance variant likely associated with DLB that may be influenced by coexisting LBD and AD pathology. Given the rare nature of the variant, further studies with greater sample size are warranted and will help to fully explain the role of p.A152T in the pathogenesis of the synucleinopathies
  •  
6.
  •  
7.
  • Puschmann, Andreas, et al. (författare)
  • Human leukocyte antigen variation and Parkinson's disease.
  • 2011
  • Ingår i: Parkinsonism & Related Disorders. - : Elsevier. - 1873-5126. ; 17, s. 376-378
  • Tidskriftsartikel (refereegranskat)abstract
    • A role for the immune system in the pathogenesis of Parkinson's Disease (PD) has previously been suggested. A recent genome-wide association (GWA) study identified an association between one single nucleotide polymorphism (SNP) in the human leucocyte antigen (HLA) region (HLA-DRA rs3129882) and PD in a population of American patients with European ancestry. In that study, the minor rs3129882 allele (G) was associated with an increased risk of PD under an additive model. Due to the increased likelihood of obtaining false positive results in GWA studies compared to studies conducted based on a hypothesis-driven approach, repeated validation of findings from GWA studies are necessary. Herein, we evaluated the association between rs3129882 and PD in three different Caucasian patient-control series (combined 1313 patients and 1305 controls) from the US, Ireland, and Poland. We observed no association (OR: 0.96, P = 0.50) between rs3129882 and PD when analyzing our data under an additive or dominant model. In contrast, when examined under a recessive model, the GG genotype was observed to be protective in the Irish (OR: 0.55, P = 0.008), Polish (OR: 0.67, P = 0.040) and combined (OR: 0.75, P = 0.006) patient-control series. In view of these diverging results, the exact role of genetic variation at the HLA region and susceptibility to PD remains to be resolved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy