SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuehn Ingolf) "

Sökning: WFRF:(Kuehn Ingolf)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Lindborg, Regina, et al. (författare)
  • Effect of habitat area and isolation on plant trait distribution in European forests and grasslands
  • 2012
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 35:4, s. 356-363
  • Tidskriftsartikel (refereegranskat)abstract
    • A number of studies show contrasting results in how plant species with specific life-history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north-central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life-span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence-related traits, life-span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non-clonal plant species, and long-lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long-lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi-natural patches, where many non-clonal and short-lived species have already disappeared. Our study based on a large-scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.
  •  
3.
  • Marini, Lorenzo, et al. (författare)
  • Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss
  • 2012
  • Ingår i: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 18:9, s. 898-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life-history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life-history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large-scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.
  •  
4.
  • Schweiger, Oliver, et al. (författare)
  • Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination
  • 2010
  • Ingår i: Biological Reviews. - 1469-185X .- 1464-7931. ; 85:4, s. 777-795
  • Forskningsöversikt (refereegranskat)abstract
    • Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant-pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.
  •  
5.
  • Settele, Josef, et al. (författare)
  • Rice ecosystem services in South-east Asia
  • 2018
  • Ingår i: Paddy and Water Environment. - : Springer. - 1611-2490 .- 1611-2504. ; 16:2, s. 211-224
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  •  
7.
  • Spangenberg, Joachim H., et al. (författare)
  • Scenarios for investigating risks to biodiversity
  • 2012
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 21:1, s. 5-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim This paper describes a set of integrative scenarios developed in the ALARM (Assessing LArge-scale environmental Risks for biodiversity with tested Methods) project. The ultimate aim of ALARM was to develop and test methods and protocols for the assessment of large-scale environmental risks to biodiversity and to evaluate mitigation options. Scenarios provide a tool for exploring such risks and the policy options to mitigate them; therefore they play a central role within the ALARM project.
  •  
8.
  • Walther, Gian-Reto, et al. (författare)
  • Alien species in a warmer world: risks and opportunities
  • 2009
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 1872-8383 .- 0169-5347. ; 24:12, s. 686-693
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species' ranges and changing communities. Under these circumstances, management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance and even consideration of the 'new' species as an enrichment of local biodiversity and key elements to maintain ecosystem services.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Sykes, Martin (4)
Bommarco, Riccardo (3)
Hickler, Thomas (3)
Lindborg, Regina (2)
Westphal, Catrin (2)
Diaz, Sandra (1)
visa fler...
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Bond-Lamberty, Ben (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Isaac, Marney (1)
Franzén, Markus (1)
Biesmeijer, Jacobus ... (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Rogers, Alistair (1)
Manzoni, Stefano (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Marini, Lorenzo (1)
Potts, Simon G. (1)
Tscharntke, Teja (1)
Ruiz-Peinado, Ricard ... (1)
Petanidou, Theodora (1)
Stout, Jane C. (1)
van Bodegom, Peter M ... (1)
Wellstein, Camilla (1)
Butler, Adam (1)
Marion, Glenn (1)
Seppelt, Ralf (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Krauss, Jochen (1)
Rillig, Matthias C. (1)
Tuerke, Manfred (1)
Weisser, Wolfgang W. (1)
Tappeiner, Ulrike (1)
Nielsen, Anders (1)
MARQUES, MARCIA (1)
Jactel, Hervé (1)
Castagneyrol, Bastie ... (1)
Scherer-Lorenzen, Mi ... (1)
visa färre...
Lärosäte
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
Stockholms universitet (3)
Göteborgs universitet (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy