SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhn Hans Georg 1961) ;pers:(Stupp S. I.)"

Sökning: WFRF:(Kuhn Hans Georg 1961) > Stupp S. I.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berns, E. J., et al. (författare)
  • A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 37, s. 50-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomimetic materials that display natural bioactive signals derived from extracellular matrix molecules like laminin and fibronectin hold promise for promoting regeneration of the nervous system. In this work, we investigated a biomimetic peptide amphiphile (PA) presenting a peptide derived from the extracellular glycoprotein tenascin-C, known to promote neurite outgrowth through interaction with beta 1 integrin. The tenascin-C mimetic PA (TN-C PA) was found to self-assemble into supramolecular nanofibers and was incorporated through co-assembly into PA gels formed by highly aligned nanofibers. TN-C PA content in these gels increased the length and number of neurites produced from neurons differentiated from encapsulated P19 cells. Furthermore, gels containing TN-C PA were found to increase migration of cells out of neurospheres cultured on gel coatings. These bioactive gels could serve as artificial matrix therapies in regions of neuronal loss to guide neural stem cells and promote through biochemical cues neurite extension after differentiation. One example of an important target would be their use as biomaterial therapies in spinal cord injury. Tenascin-C is an important extracellular matrix molecule in the nervous system and has been shown to play a role in regenerating the spinal cord after injury and guiding neural progenitor cells during brain development, however, minimal research has been reported exploring the use of biomimetic biomaterials of tenascin-C. In this work, we describe a selfassembling biomaterial system in which peptide amphiphiles present a peptide derived from tenascin-C that promotes neurite outgrowth. Encapsulation of neurons in hydrogels of aligned nanofibers formed by tenascin-C-mimetic peptide amphiphiles resulted in enhanced neurite outgrowth. Additionally, these peptide amphiphiles promoted migration of neural progenitor cells cultured on nanofiber coatings. Tenascin-C biomimetic biomaterials such as the one described here have significant potential in neuroregenerative medicine.
  •  
2.
  •  
3.
  • Motalleb, Reza, 1985, et al. (författare)
  • In vivo migration of endogenous brain progenitor cells guided by an injectable peptide amphiphile biomaterial
  • 2018
  • Ingår i: Journal of Tissue Engineering and Regenerative Medicine. - : Hindawi Limited. - 1932-6254 .- 1932-7005. ; 12:4, s. E2123-E2133
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomaterials hold great promise in helping the adult brain regenerate and rebuild after trauma. Peptide amphiphiles (PAs) are highly versatile biomaterials, gelling and forming macromolecular structures when exposed to physiological levels of electrolytes. We are here reporting on the first ever in vivo use of self-assembling PA carrying a Tenascin-C signal (E(2)Ten-C PA) for the redirection of endogenous neuroblasts in the rodent brain. The PA forms highly aligned nanofibers, displaying the migratory sequence of Tenascin-C glycoprotein as epitope. In this in vivo work, we have formed in situ a gel of aligned PA nanofibers presenting a migratory Tenascin-C signal sequence in the ventral horn of the rostral migratory stream, creating a track reaching the neocortex. Seven days posttransplant, doublecortin positive cells were observed migrating inside and alongside the injected biomaterial, reaching the cortex. We observed a 24-fold increase in number of redirected neuroblasts for the E(2)Ten-C PA-injected animals compared to control. We also found injecting the E(2)Ten-C PA to cause minimal neuroinflammatory response. Analysing GFAP(+) astrocytes and Iba1(+) microglia activation, the PA does not elicit a stronger neuroinflammatory response than would be expected from a small needle stab wound. Redirecting endogenous neuroblasts and increasing the number of cells reaching a site of injury using PAs may open up new avenues for utilizing the pool of neuroblasts and neural stem cells within the adult brain for regenerating damaged brain tissue and replacing neurons lost to injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy