SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kupfer T.) ;pers:(Barbarino Cristina)"

Sökning: WFRF:(Kupfer T.) > Barbarino Cristina

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellm, Eric C., et al. (författare)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
2.
  • Ho, Anna Y. Q., et al. (författare)
  • Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova : Pre-explosion Emission and a Rapidly Rising Luminous Transient
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 887:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 +/- 0.1 mag hr(-1)) and luminous (M-g,M- peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (L-bol greater than or similar to 3 x 10(44) erg s(-1)), the short rise time (t(rise) = 3 days in g band), and the blue colors at peak (g-r similar to -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T-eff greater than or similar to 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M-g similar to M-r approximate to -14 mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E-gamma,E- iso < 4.9 x 10(48) erg, a limit on X-ray emission L-X < 10(40) erg s(-1), and a limit on radio emission nu L-v less than or similar to 10(37) erg s(-1). Taken together, we find that the early (< 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M-circle dot) at large radii (3 x 10(14) cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (> 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56.
  •  
3.
  • Fremling, C., et al. (författare)
  • ZTF18aalrxas : A Type IIb Supernova from a Very Extended Low-mass Progenitor
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 878:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility. ZTF18aalrxas was discovered while the optical emission was still rising toward the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (ultraviolet and optical) light curves (LCs), and optical spectra spanning from approximate to 0.7 to approximate to 480 days past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium model that simultaneously reproduces both the Ni-56-powered bolometric LC and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 M-circle dot) and the total ejecta mass (1.7 M-circle dot) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius (790-1050 R-circle dot) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spectrum is modeled and analyzed to constrain the amount of ejected oxygen (0.3-0.5 M-circle dot) and the total hydrogen mass (approximate to 0.15 M-circle dot) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low (12-13 M-circle dot) zero-age main-sequence mass progenitor. The LCs and spectra of ZTF18aalrxas are not consistent with massive single-star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario.
  •  
4.
  • Ho, Anna Y. Q., et al. (författare)
  • SN 2020bvc : A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby (z = 0.0252; d.=.114Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity (L-radio approximate to 10(37) erg s(-1)) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v greater than or similar to 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (L-X approximate to 10(41) erg s(-1)) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6x night(-1)) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass M-e < 10(-2) M-circle dot at radius R-e > 10(12) cm) and the second peak from the radioactive decay of 56Ni. SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z less than or similar to 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts approximate to 1 day.and reaches a peak luminosity M approximate to -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
  •  
5.
  • Sollerman, Jesper, et al. (författare)
  • Two stripped envelope supernovae with circumstellar interaction : But only one really shows it
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present observations of SN 2019tsf (ZTF19ackjszs) and SN 2019oys (ZTF19abucwzt). These two stripped envelope (SE) Type Ib supernovae (SNe) suddenly showed a (re-)brightening in their late light curves. We investigate this in the context of circumstellar material (CSM) interaction with previously ejected material, a phenomenon that is unusual among SE SNe.Aims. We use our follow-up photometry and spectroscopy for these supernovae to demonstrate the presence of CSM interaction, estimate the properties of the CSM, and discuss why the signals are so different for the two objects.Methods. We present and analyze observational data, consisting of optical light curves and spectra. For SN 2019oys, we also have detections in radio as well as limits from UV and X-rays.Results. Both light curves show spectacular re-brightening after about 100 days. In the case of SN 2019tsf, the re-brightening is followed by a new period of decline, and the spectra never show signs of narrow emission lines that would indicate CSM interaction. On the contrary, SN 2019oys made a spectral makeover from a Type Ib to a spectrum clearly dominated by CSM interaction at the light curve brightening phase. Deep Keck spectra reveal a plethora of narrow high-ionization lines, including coronal lines, and the radio observations show strong emission.Conclusions. The rather similar light curve behavior – with a late linear re-brightening – of these two Type Ib SE SNe indicate CSM interaction as the powering source. For SN 2019oys the evidence for a phase where the ejecta hit H-rich material, likely ejected from the progenitor star, is conspicuous. We observe strong narrow lines of H and He, but also a plethora of high-ionization lines, including coronal lines, revealing shock interaction. Spectral simulations of SN 2019oys show two distinct density components, one with density ≳109 cm−3, dominated by somewhat broader, low-ionization lines of H I, He I, Na I, and Ca II, and one with narrow, high-ionization lines at a density ∼106 cm−3. The former is strongly affected by electron scattering, while the latter is unaffected. The evidence for CSM interaction in SN 2019oys is corroborated by detections in radio. On the contrary, for SN 2019tsf, we find little evidence in the spectra for any CSM interaction. 
  •  
6.
  • Soumagnac, Maayane T., et al. (författare)
  • Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common-consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events.
  •  
7.
  • Strotjohann, Nora L., et al. (författare)
  • Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction-powered supernovae (SNe) explode within an optically thick circumstellar medium (CSM) that could be ejected during eruptive events. To identify and characterize such pre-explosion outbursts, we produce forced-photometry light curves for 196 interacting SNe, mostly of Type IIn, detected by the Zwicky Transient Facility between early 2018 and 2020 June. Extensive tests demonstrate that we only expect a few false detections among the 70,000 analyzed pre-explosion images after applying quality cuts and bias corrections. We detect precursor eruptions prior to 18 Type IIn SNe and prior to the Type Ibn SN 2019uo. Precursors become brighter and more frequent in the last months before the SN and month-long outbursts brighter than magnitude -13 occur prior to 25% (5-69%, 95% confidence range) of all Type IIn SNe within the final three months before the explosion. With radiative energies of up to 10(49) erg, precursors could eject similar to 1 M of material. Nevertheless, SNe with detected precursors are not significantly more luminous than other SNe IIn, and the characteristic narrow hydrogen lines in their spectra typically originate from earlier, undetected mass-loss events. The long precursor durations require ongoing energy injection, and they could, for example, be powered by interaction or by a continuum-driven wind. Instabilities during the neon- and oxygen-burning phases are predicted to launch precursors in the final years to months before the explosion; however, the brightest precursor is 100 times more energetic than anticipated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy