SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kwok John B.) ;hsvcat:3"

Search: WFRF:(Kwok John B.) > Medical and Health Sciences

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
3.
  • Ferrari, Raffaele, et al. (author)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • In: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
4.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
5.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
6.
  • van der Meer, Dennis, et al. (author)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • In: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Journal article (peer-reviewed)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
7.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
8.
  • Sonderby, Ida E., et al. (author)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • In: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • Journal article (peer-reviewed)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
9.
  • Cawthon, Peggy M, et al. (author)
  • What Cut-Point in Gait Speed Best Discriminates Community-Dwelling Older Adults With Mobility Complaints From Those Without? A Pooled Analysis From the Sarcopenia Definitions and Outcomes Consortium.
  • 2021
  • In: The journals of gerontology. Series A, Biological sciences and medical sciences. - : Oxford University Press (OUP). - 1758-535X .- 1079-5006. ; 76:10, s. e321-e327
  • Journal article (peer-reviewed)abstract
    • Cut-points to define slow walking speed have largely been derived from expert opinion.Study participants (13 589 men and 5043 women aged ≥65years) had walking speed (m/s) measured over 4-6 m (mean ± SD: 1.20 ± 0.27 m/s in men and 0.94 ± 0.24 m/s in women.) Mobility limitation was defined as any self-reported difficulty with walking approximately 1/4 mile (prevalence: 12.6% men, 26.4% women). Sex-stratified classification and regression tree (CART) models with 10-fold cross-validation identified walking speed cut-points that optimally discriminated those who reported mobility limitation from those who did not.Among 5043 women, CART analysis identified 2 cut-points, classifying 4144 (82.2%) with walking speed ≥0.75 m/s, which we labeled as "fast"; 478 (9.5%) as "intermediate" (walking speed ≥0.62 m/s but <0.75 m/s); and 421 (8.3%) as "slow" (walking speed <0.62 m/s). Among 13 589 men, CART analysis identified 3 cut-points, classifying 10 001 (73.6%) with walking speed ≥1.00 m/s ("very fast"); 2901 (21.3%) as "fast" (walking speed ≥0.74 m/s but <1.00 m/s); 497 (3.7%) as "intermediate" (walking speed ≥0.57 m/s but <0.74 m/s); and 190 (1.4%) as "slow" (walking speed <0.57 m/s). Prevalence of self-reported mobility limitation was lowest in the "fast" or "very fast" (11% for men and 19% for women) and highest in the "slow" (60.5% in men and 71.0% in women). Rounding the 2 slower cut-points to 0.60 m/s and 0.75 m/s reclassified very few participants.Cut-points in walking speed of approximately 0.60 m/s and 0.75 m/s discriminate those with self-reported mobility limitation from those without.
  •  
10.
  • Styrkarsdottir, Unnur, et al. (author)
  • GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Bone area is one measure of bone size that is easily derived from dual-energy X-ray absorptiometry (DXA) scans. In a GWA study of DXA bone area of the hip and lumbar spine (N ≥ 28,954), we find thirteen independent association signals at twelve loci that replicate in samples of European and East Asian descent (N = 13,608 – 21,277). Eight DXA area loci associate with osteoarthritis, including rs143384 in GDF5 and a missense variant in COL11A1 (rs3753841). The strongest DXA area association is with rs11614913[T] in the microRNA MIR196A2 gene that associates with lumbar spine area (P = 2.3 × 10 −42 , β = −0.090) and confers risk of hip fracture (P = 1.0 × 10 −8 , OR = 1.11). We demonstrate that the risk allele is less efficient in repressing miR-196a-5p target genes. We also show that the DXA area measure contributes to the risk of hip fracture independent of bone density.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14
Type of publication
journal article (14)
Type of content
peer-reviewed (14)
Author/Editor
Schofield, Peter R (7)
Armstrong, Nicola J. (6)
Agartz, Ingrid (5)
Brouwer, Rachel M (5)
Westlye, Lars T (5)
Andreassen, Ole A (5)
show more...
de Geus, Eco J. C. (5)
Martin, Nicholas G. (5)
Boomsma, Dorret I. (5)
Djurovic, Srdjan (5)
Thalamuthu, Anbupala ... (5)
Cichon, Sven (5)
Le Hellard, Stephani ... (5)
Hottenga, Jouke-Jan (5)
Jahanshad, Neda (5)
Crespo-Facorro, Bene ... (5)
Tordesillas-Gutierre ... (5)
Sachdev, Perminder S ... (5)
Wittfeld, Katharina (5)
Schork, Andrew J (5)
Teumer, Alexander (5)
Schumann, Gunter (5)
de Zubicaray, Greig ... (5)
Ehrlich, Stefan (5)
Espeseth, Thomas (5)
Fisher, Simon E. (5)
Mather, Karen A. (5)
McMahon, Katie L. (5)
Paus, Tomas (5)
Pausova, Zdenka (5)
Franke, Barbara (4)
Ching, Christopher R ... (4)
Thompson, Paul M (4)
Andersson, Micael (4)
Hardy, John (4)
van der Meer, Dennis (4)
Heinz, Andreas (4)
Ames, David (4)
Medland, Sarah E (4)
Corvin, Aiden (4)
Grabe, Hans J. (4)
Wright, Margaret J. (4)
Schmaal, Lianne (4)
Desrivieres, Sylvane (4)
Milaneschi, Yuri (4)
Ophoff, Roel A (4)
Brodaty, Henry (4)
Donohoe, Gary (4)
Glahn, David C. (4)
Shumskaya, Elena (4)
show less...
University
Karolinska Institutet (9)
Umeå University (6)
Uppsala University (6)
Lund University (4)
University of Gothenburg (3)
Stockholm University (3)
show more...
Linköping University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (14)
Research subject (UKÄ/SCB)
Natural sciences (3)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view