SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lätt Jimmy) ;hsvcat:1"

Sökning: WFRF:(Lätt Jimmy) > Naturvetenskap

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Durmo, Faris, et al. (författare)
  • Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Radiological assessment of primary brain neoplasms, both high (HGG) and low grade tumors (LGG), based on contrast-enhancement alone can be inaccurate. We evaluated the radiological value of amide proton transfer weighted (APTw) MRI as an imaging complement for pre-surgical radiological diagnosis of brain tumors.METHODS: Twenty-six patients were evaluated prospectively; (22 males, 4 females, mean age 55 years, range 26-76 years) underwent MRI at 3T using T1-MPRAGE pre- and post-contrast administration, conventional T2w, FLAIR, and APTw imaging pre-surgically for suspected primary/secondary brain tumor. Assessment of the additional value of APTw imaging compared to conventional MRI for correct pre-surgical brain tumor diagnosis. The initial radiological pre-operative diagnosis was based on the conventional contrast-enhanced MR images. The range, minimum, maximum, and mean APTw signals were evaluated. Conventional normality testing was performed; with boxplots/outliers/skewness/kurtosis and a Shapiro-Wilk's test. Mann-Whitney U for analysis of significance for mean/max/min and range APTw signal. A logistic regression model was constructed for mean, max, range and Receiver Operating Characteristic (ROC) curves calculated for individual and combined APTw signals.RESULTS: Conventional radiological diagnosis prior to surgery/biopsy was HGG (8 patients), LGG (12 patients), and metastasis (6 patients). Using the mean and maximum: APTw signal would have changed the pre-operative evaluation the diagnosis in 8 of 22 patients (two LGGs excluded, two METs excluded). Using a cut off value of >2.0% for mean APTw signal integral, 4 of the 12 radiologically suspected LGG would have been diagnosed as high grade glioma, which was confirmed by histopathological diagnosis. APTw mean of >2.0% and max >2.48% outperformed four separate clinical radiological assessments of tumor type, P-values = .004 and = .002, respectively.CONCLUSIONS: Using APTw-images as part of the daily clinical pre-operative radiological evaluation may improve diagnostic precision in differentiating LGGs from HGGs, with potential improvement of patient management and treatment.
  •  
2.
  • Durmo, Faris, et al. (författare)
  • Brain Tumor Characterization Using Multibiometric Evaluation of MRI
  • 2018
  • Ingår i: Tomography : a journal for imaging research. - : MDPI AG. - 2379-1381. ; 4:1, s. 14-25
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim was to evaluate volume, diffusion, and perfusion metrics for better presurgical differentiation between high-grade gliomas (HGG), low-grade gliomas (LGG), and metastases (MET). For this retrospective study, 43 patients with histologically verified intracranial HGG (n = 18), LGG (n = 10), and MET (n = 15) were chosen. Preoperative magnetic resonance data included pre- and post-gadolinium contrast-enhanced T1-weighted fluid-attenuated inversion recover, cerebral blood flow (CBF), cerebral blood volume (CBV), fractional anisotropy, and apparent diffusion coefficient maps used for quantification of magnetic resonance biometrics by manual delineation of regions of interest. A binary logistic regression model was applied for multiparametric analysis and receiver operating characteristic (ROC) analysis. Statistically significant differences were found for normalized-ADC-tumor (nADC-T), normalized-CBF-tumor (nCBF-T), normalized-CBV-tumor (nCBV-T), and normalized-CBF-edema (nCBF-E) between LGG and HGG, and when these metrics were combined, HGG could be distinguished from LGG with a sensitivity and specificity of 100%. The only metric to distinguish HGG from MET was the normalized-ADC-E with a sensitivity of 68.8% and a specificity of 80%. LGG can be distinguished from MET by combining edema volume (Vol-E), Vol-E/tumor volume (Vol-T), nADC-T, nCBF-T, nCBV-T, and nADC-E with a sensitivity of 93.3% and a specificity of 100%. The present study confirms the usability of a multibiometric approach including volume, perfusion, and diffusion metrics in differentially diagnosing brain tumors in preoperative patients and adds to the growing body of evidence in the clinical field in need of validation and standardization.
  •  
3.
  • Helms, Gunther, et al. (författare)
  • Cross-vendor transfer and RF coil comparison of a high-resolution MP2RAGE protocol for brain imaging at 7T
  • 2020
  • Ingår i: Acta Scientiarum Lundensia. - 1651-5013. ; 2020:001, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. An established MP2RAGE protocol for semi-quantitative structural brain MRI was transferred from one 7T MR scanner to that of another vendor featuring comparable hardware, but opposite polarity. On this system, the scan time could be reduced from 11 to 8 minutes by elliptical k-space sampling. Three configurations of radio-frequency (RF) transmission were compared (single channel with quadrature slitting, two and eight channels of fixed phase delays). Data processing for offline calculation MP2RAGE images is described in detail. The DICOM scaling of scanner B entails a loss of precision and accuracy and stronger artifacts in regions of low RF field, which can be improved by dielectric pads. For comparison and multi-site studies, though, use of an identical scan protocol and identical RF hardware is recommended.
  •  
4.
  • Lampinen, Björn, et al. (författare)
  • Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding.
  • 2023
  • Ingår i: NeuroImage. - 1095-9572. ; 282
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
  •  
5.
  • Olsson, Hampus, et al. (författare)
  • Magnetization transfer (MT) of human brain at 7T in the context of a 3D multi-parameter mapping protocol
  • 2019
  • Ingår i: Magnetization transfer (MT) of human brain at 7T in the context of a 3D multi-parameter mapping protocol. - 1545-4428. ; 27
  • Konferensbidrag (refereegranskat)abstract
    • 3D multi-gradient echo MRI can be used to estimate T1, T2*, PD and the magnetization transfer (MT), which is increasingly used for multi-parametricmapping (MPM) of human brain. The increased polarization at 7T compared to lower B0 allows for increased spatial resolution or reduced scantimes. However, SAR restrictions imposed on the MT pulse and B1 inhomogeneity pose challenges. In this work, we propose a protocol for MPM ofhuman brain at 7T with special attention paid to eliminating bias when mapping MT saturation while obtaining sub-millimeter isotropic spatial resolution inunder 12 minutes with acceptable SNR.
  •  
6.
  • Olsson, Hampus, et al. (författare)
  • Radiofrequency bias correction of magnetization prepared rapid gradient echo MRI at 7.0 Tesla using an external reference in a sequential protocol
  • 2021
  • Ingår i: Tomography : a journal for imaging research. - 2379-1381. ; 7:3, s. 434-451
  • Tidskriftsartikel (refereegranskat)abstract
    • At field strengths of 7 T and above, T1-weighted imaging of human brain suffers increasingly from radiofrequency (RF) B1 inhomogeneities. The well-known MP2RAGE (magnetization prepared two rapid acquisition gradient echoes) sequence provides a solution but may not be readily available for all MR systems. Here, we describe the implementation and evaluation of a sequential protocol to obtain normalized magnetization prepared rapid gradient echo (MPRAGE) images at 0.7,0.8, or 0.9-mm isotropic spatial resolution. Optimization focused on the reference gradient-recalled echo (GRE) that was used for normalization of the MPRAGE. A good compromise between white-gray matter contrast and the signal-to-noise ratio (SNR) was reached at a flip angle of 3° and total scan time was reduced by increasing the reference voxel size by a factor of 8 relative to the MPRAGE resolution. The average intra-subject coefficient-of-variation (CV) in segmented white matter (WM) was 7.9 ±3.3% after normalization, compared to 20 ±8.4% before. The corresponding inter-subject average CV in WM as 7.6 ±7.6% and 13 ±7.8%. Maps of T1 derived from forward signal modelling showed no obvious bias after correction by a separately acquired flip angle map. To conclude, a non-interleaved acquisition for normalization of MPRAGE offers a simple alternative to MP2RAGE to obtain semi-quantitative purely T1-weighted images. These images can be converted to T1 maps, analogously to the established MP2RAGE approach. Scan time can be reduced by increasing the reference voxel size which has only a miniscule effect on image quality.
  •  
7.
  • Olsson, Hampus, et al. (författare)
  • Reducing bias in dual flip angle T1-mapping in human brain at 7T
  • 2020
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 84:3, s. 1347-1358
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To address the systematic bias in whole-brain dual flip angle (DFA) T1-mapping at 7T by optimizing the flip angle pair and carefully selecting RF pulse shape and duration. Theory and Methods: Spoiled gradient echoes can be used to estimate whole-brain maps of T1. This can be accomplished by using only two acquisitions with different flip angles, i.e., a DFA-based approach. Although DFA-based T1-mapping is seemingly straightforward to implement, it is sensitive to bias caused by incomplete spoiling and incidental magnetization transfer (MT) effects. Further bias is introduced by the increased B0 and B1+ inhomogeneities at 7T. Experiments were performed to determine the optimal flip angle pair and appropriate RF pulse shape and duration. Obtained T1 estimates were validated using inversion recovery prepared EPI and compared to literature values. A multi-echo readout was used to increase SNR, enabling quantification of R2* and susceptibility, X. Results: Incomplete spoiling was observed above a local flip angle of approximately 20 degrees. An asymmetric gauss-filtered sinc pulse with a constant duration of 700 us showed a sufficiently flat frequency response profile to avoid incomplete excitation in areas with high B0 offsets. A pulse duration of 700 us minimized effects from incidental MT. Conclusion: When performing DFA-based T1-mapping one should (i) limit the higher flip angle to avoid incomplete spoiling, (ii) use a RF pulse shape insensitive to B0 inhomogeneities and (iii) apply a constant RF pulse duration, balanced to minimize incidental MT.
  •  
8.
  • Rumetshofer, Theodor, et al. (författare)
  • Tract-based white matter hyperintensity patterns in patients with systemic lupus erythematosus using an unsupervised machine learning approach
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, little is known about the spatial distribution of white matter hyperintensities (WMH) in the brain of patients with Systemic Lupus erythematosus (SLE). Previous lesion markers, such as number and volume, ignore the strategic location of WMH. The goal of this work was to develop a fully-automated method to identify predominant patterns of WMH across WM tracts based on cluster analysis. A total of 221 SLE patients with and without neuropsychiatric symptoms from two different sites were included in this study. WMH segmentations and lesion locations were acquired automatically. Cluster analysis was performed on the WMH distribution in 20 WM tracts. Our pipeline identified five distinct clusters with predominant involvement of the forceps major, forceps minor, as well as right and left anterior thalamic radiations and the right inferior fronto-occipital fasciculus. The patterns of the affected WM tracts were consistent over the SLE subtypes and sites. Our approach revealed distinct and robust tract-based WMH patterns within SLE patients. This method could provide a basis, to link the location of WMH with clinical symptoms. Furthermore, it could be used for other diseases characterized by presence of WMH to investigate both the clinical relevance of WMH and underlying pathomechanism in the brain.
  •  
9.
  • Scherman Rydhög, Anna, et al. (författare)
  • Intravoxel Incoherent Motion (IVIM) Imaging at Different Magnetic Field Strengths: What is Feasible?
  • 2014
  • Ingår i: Magnetic Resonance Imaging. - : Elsevier BV. - 1873-5894 .- 0730-725X. ; 32:10, s. 1247-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to limited SNR the cerebral applications of the intravoxel incoherent motion (IVIM) concept have been sparse. MRI hardware developments have resulted in improved SNR and this may justify a reassessment of IVIM imaging for non-invasive quantification of the cerebral blood volume (CBV) as a first step towards determining the optimal field strength.
  •  
10.
  • Szczepankiewicz, Filip, et al. (författare)
  • Tensor-valued diffusion encoding for diffusional variance decomposition (DIVIDE) : Technical feasibility in clinical MRI systems
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Microstructure imaging techniques based on tensor-valued diffusion encoding have gained popularity within the MRI research community. Unlike conventional diffusion encoding—applied along a single direction in each shot—tensor-valued encoding employs diffusion encoding along multiple directions within a single preparation of the signal. The benefit is that such encoding may probe tissue features that are not accessible by conventional encoding. For example, diffusional variance decomposition (DIVIDE) takes advantage of tensor-valued encoding to probe microscopic diffusion anisotropy independent of orientation coherence. The drawback is that tensor-valued encoding generally requires gradient waveforms that are more demanding on hardware; it has therefore been used primarily in MRI systems with relatively high performance. The purpose of this work was to explore tensor-valued diffusion encoding on clinical MRI systems with varying performance to test its technical feasibility within the context of DIVIDE. We performed whole-brain imaging with linear and spherical b-tensor encoding at field strengths between 1.5 and 7 T, and at maximal gradient amplitudes between 45 and 80 mT/m. Asymmetric gradient waveforms were optimized numerically to yield b-values up to 2 ms/μm 2 . Technical feasibility was assessed in terms of the repeatability, SNR, and quality of DIVIDE parameter maps. Variable system performance resulted in echo times between 83 to 115 ms and total acquisition times of 6 to 9 minutes when using 80 signal samples and resolution 2×2×4 mm 3 . As expected, the repeatability, signal-to-noise ratio and parameter map quality depended on hardware performance. We conclude that tensor-valued encoding is feasible for a wide range of MRI systems—even at 1.5 T with maximal gradient waveform amplitudes of 33 mT/m—and baseline experimental design and quality parameters for all included configurations. This demonstrates that tissue features, beyond those accessible by conventional diffusion encoding, can be explored on a wide range of MRI systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy