SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lätt Jimmy) ;pers:(Jönsen Andreas)"

Sökning: WFRF:(Lätt Jimmy) > Jönsen Andreas

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mårtensson, Johan, et al. (författare)
  • Structural changes on mri demonstrate specific cerebellar involvement in sle patients—a vbm study
  • 2021
  • Ingår i: Brain Sciences. - : MDPI AG. - 2076-3425. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study is to investigate possible differences in brain structure, as measured by T1-weighted MRI, between patients with systemic lupus erythematosus (SLE) and healthy controls (HC), and whether any observed differences were in turn more severe in SLE patients with neuropsychiatric manifestations (NPSLE) than those without (non-NPSLE). Structural T1weighted MRI was performed on 69 female SLE patients (mean age = 35.8 years, range = 18–51 years) and 24 age-matched female HC (mean age = 36.8 years, range = 23–52 years) in conjunction with neuropsychological assessment using the CNS Vital Signs test battery. T1-weighted images were preprocessed and analyzed by FSL-VBM. The results show that SLE patients had lower grey matter probability values than the control group in the VIIIa of the cerebellum bilaterally, a region that has previously been implied in sensorimotor processing in human and non-human primates. No structural differences for this region were found between NPSLE and non-NPSLE patients. VBM values from the VIIIa region showed a weak positive correlation with the psychomotor speed domain from CNS Vital Signs (p = 0.05, r = 0.21), which is in line with its presumed role as a sensorimotor processing area.
  •  
2.
  • Nystedt, Jessika, et al. (författare)
  • Altered white matter microstructure in lupus patients : A diffusion tensor imaging study
  • 2018
  • Ingår i: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The purpose of this study was to investigate whether white matter microstructure is altered in patients suffering from systemic lupus erythematosus (SLE), and if so, whether such alterations differed between patients with and without neuropsychiatric symptoms. Methods: Structural MRI and diffusion tensor imaging (DTI) were performed in 64 female SLE patients (mean age 36.9 years, range 18.2-52.2 years) and 21 healthy controls (mean age 36.7 years, range 23.3-51.2 years) in conjunction with clinical examination, laboratory tests, cognitive evaluation, and self-assessment questionnaires. The patients were subgrouped according to the American College of Rheumatology Neuropsychiatric Systemic Lupus Erythematosus case definitions into non-neuropsychiatric SLE (nonNPSLE) and neuropsychiatric SLE (NPSLE). Results: Comparisons between the SLE group and healthy controls showed that the mean fractional anisotropy (FA) was significantly reduced in the right rostral cingulum (p=0.038), the mid-sagittal corpus callosum (CC) (p=0.050), and the forceps minor of the CC (p=0.015). The mean diffusivity (MD) was significantly increased in the left hippocampal cingulum (p=0.017). No significant differences in MD or FA values were identified between NPSLE and nonNPSLE patients. Disease duration among all SLE patients correlated significantly with reduced FA in the CC (p<0.05). No correlations were found between DTI parameters and white matter hyperintensities, SLE Disease Activity Index-2000, Systemic Lupus International Collaborating Clinical/ACR Organ Damage Index, or Montgomery Asberg Depression Rate Score Self-report. Conclusions: We found alterations of white matter microstructure in SLE patients that were related to disease duration and fatigue. Our results indicate that cerebral involvement in SLE is not isolated to the NPSLE subgroup.
  •  
3.
  • Rumetshofer, Theodor, et al. (författare)
  • Tract-based white matter hyperintensity patterns in patients with systemic lupus erythematosus using an unsupervised machine learning approach
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, little is known about the spatial distribution of white matter hyperintensities (WMH) in the brain of patients with Systemic Lupus erythematosus (SLE). Previous lesion markers, such as number and volume, ignore the strategic location of WMH. The goal of this work was to develop a fully-automated method to identify predominant patterns of WMH across WM tracts based on cluster analysis. A total of 221 SLE patients with and without neuropsychiatric symptoms from two different sites were included in this study. WMH segmentations and lesion locations were acquired automatically. Cluster analysis was performed on the WMH distribution in 20 WM tracts. Our pipeline identified five distinct clusters with predominant involvement of the forceps major, forceps minor, as well as right and left anterior thalamic radiations and the right inferior fronto-occipital fasciculus. The patterns of the affected WM tracts were consistent over the SLE subtypes and sites. Our approach revealed distinct and robust tract-based WMH patterns within SLE patients. This method could provide a basis, to link the location of WMH with clinical symptoms. Furthermore, it could be used for other diseases characterized by presence of WMH to investigate both the clinical relevance of WMH and underlying pathomechanism in the brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy