SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lammertsma Adriaan A.) ;pers:(Boellaard Ronald)"

Sökning: WFRF:(Lammertsma Adriaan A.) > Boellaard Ronald

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mansor, Syahir, et al. (författare)
  • Parametric Methods for Dynamic (11)C-Phenytoin PET Studies.
  • 2017
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 58:3, s. 479-483
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the performance of various methods for generating quantitative parametric images of dynamic (11)C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic (11)C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (VT) and influx rate (K1) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K1 and VT values. Results: Biases in VT observed with all parametric methods were less than 5%. For K1, spectral analysis showed a negative bias of 16%. The mean TRT variabilities of VT and K1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar VT and K1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric VT and K1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration.
  •  
2.
  • Danad, Ibrahim, et al. (författare)
  • Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient : a [O-15]H2O PET study
  • 2014
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 35:31, s. 2094-U149
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Myocardial ischaemia occurs principally in the subendocardial layer, whereas conventional myocardial perfusion imaging provides no information on the transmural myocardial blood flow (MBF) distribution. Subendocardial perfusion measurements and quantification of the transmural perfusion gradient (TPG) could be more sensitive and specific for the detection of coronary artery disease (CAD). The current study aimed to determine the impact of lesion severity as assessed by the fractional flow reserve (FFR) on subendocardial perfusion and the TPG using [O-15]H2O positron emission tomography (PET) imaging in patients evaluated for CAD. Methods and results Sixty-six patients with anginal chest pain were prospectively enrolled and underwent [O-15] H2O myocardial perfusion PET imaging. Subsequently, invasive coronary angiography was performed and FFR obtained in all coronary arteries irrespective of the PET imaging results. Thirty (45%) patients were diagnosed with significant CAD(i.e. FFR <= 0.80), whereas on a per vessel analysis (n = 198), 53 (27%) displayed a positive FFR. Transmural hyperaemic MBF decreased significantly from 3.09 +/- 1.16 to 1.67 +/- 0.57 mL min(-1) g(-1) (P < 0.001) in non-ischaemic and ischaemic myocardium, respectively. The TPG decreased during hyperaemia when compared with baseline (1.20 +/- 0.14 vs. 0.94 +/- 0.17, P < 0.001), and was lower in arteries with a positive FFR (0.97 +/- 0.16 vs. 0.88 +/- 0.18, P < 0.01). ATPG threshold of 0.94 yielded an accuracy to detect CAD of 59%, which was inferior to transmural MBF with an optimal cutoff of 2.20 mL min(-1) g(-1) and an accuracy of 85% (P < 0.001). Diagnostic accuracy of subendocardial perfusion measurements was comparable with transmural MBF (83 vs. 85%, respectively, P = NS). Conclusion Cardiac [O-15]H2O PET imaging is able to distinguish subendocardial from subepicardial perfusion in the myocardium of normal dimensions. Hyperaemic TPG is significantly lower in ischaemic myocardium. This technique can potentially be employed to study subendocardial perfusion impairment in more detail. However, the diagnostic accuracy of subendocardial hyperaemic perfusion and TPG appears to be limited compared with quantitative transmural MBF, warranting further study.
  •  
3.
  • Golla, Sandeep S V, et al. (författare)
  • Parametric Binding Images of the TSPO Ligand 18F-DPA-714.
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:10, s. 1543-1547
  • Tidskriftsartikel (refereegranskat)abstract
    • (18)F-labeled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide (DPA-714) is a radioligand for the 18-kDa translocator protein. The purpose of the present study was to identify the best method for generating quantitative parametric images of (18)F-DPA-714 binding.METHODS: Ninety-minute dynamic (18)F-DPA-714 PET scans with full arterial sampling from 6 healthy subjects and 9 Alzheimer disease (AD) patients were used. Plasma-input-based Logan graphical analysis and spectral analysis were used to generate parametric volume of distribution (VT) images. Five versions of Ichise, reference Logan, and 2 basis function implementations (receptor parametric mapping and simplified reference tissue model 2 [SRTM2]) of SRTM, all using gray matter cerebellum as the reference region, were applied to generate nondisplaceable binding potential (BPND) images.RESULTS: Plasma-input Logan analysis (r(2) = 0.99; slope, 0.88) and spectral analysis (r(2) = 0.99, slope, 0.93) generated estimates of VT that correlated well with values obtained using nonlinear regression. BPND values generated using SRTM2 (r(2) = 0.83; slope, 0.95) and reference Logan analysis (r(2) = 0.88; slope, 1.01) correlated well with nonlinear regression-based estimates.CONCLUSION: Both Logan analysis and spectral analysis can be used to obtain quantitatively accurate VT images of (18)F-DPA-714. In addition, SRTM2 and reference Logan analysis can provide accurate BPND images. These parametric images could be used for voxel-based comparisons.
  •  
4.
  • Golla, Sandeep S. V., et al. (författare)
  • Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising
  • 2017
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Accurate quantification of PET studies depends on the spatial resolution of the PET data. The commonly limited PET resolution results in partial volume effects (PVE). Iterative deconvolution methods (IDM) have been proposed as a means to correct for PVE. IDM improves spatial resolution of PET studies without the need for structural information (e.g. MR scans). On the other hand, deconvolution also increases noise, which results in lower signal-to-noise ratios (SNR). The aim of this study was to implement IDM in combination with HighlY constrained back-PRojection (HYPR) denoising to mitigate poor SNR properties of conventional IDM.METHODS: An anthropomorphic Hoffman brain phantom was filled with an [18F]FDG solution of ~25 kBq mL-1 and scanned for 30 min on a Philips Ingenuity TF PET/CT scanner (Philips, Cleveland, USA) using a dynamic brain protocol with various frame durations ranging from 10 to 300 s. Van Cittert IDM was used for PVC of the scans. In addition, HYPR was used to improve SNR of the dynamic PET images, applying it both before and/or after IDM. The Hoffman phantom dataset was used to optimise IDM parameters (number of iterations, type of algorithm, with/without HYPR) and the order of HYPR implementation based on the best average agreement of measured and actual activity concentrations in the regions. Next, dynamic [11C]flumazenil (five healthy subjects) and [11C]PIB (four healthy subjects and four patients with Alzheimer's disease) scans were used to assess the impact of IDM with and without HYPR on plasma input-derived distribution volumes (VT) across various regions of the brain.RESULTS: In the case of [11C]flumazenil scans, Hypr-IDM-Hypr showed an increase of 5 to 20% in the regional VT whereas a 0 to 10% increase or decrease was seen in the case of [11C]PIB depending on the volume of interest or type of subject (healthy or patient). References for these comparisons were the VTs from the PVE-uncorrected scans.CONCLUSIONS: IDM improved quantitative accuracy of measured activity concentrations. Moreover, the use of IDM in combination with HYPR (Hypr-IDM-Hypr) was able to correct for PVE without increasing noise.
  •  
5.
  • Golla, Sandeep S V, et al. (författare)
  • Quantification of [18F]DPA-714 binding in the human brain : initial studies in healthy controls and Alzheimer's disease patients
  • 2015
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 35:5, s. 766-772
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorine-18 labelled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide ([(18)F]DPA-714) binds to the 18-kDa translocator protein (TSPO) with high affinity. The aim of this initial methodological study was to develop a plasma input tracer kinetic model for quantification of [(18)F]DPA-714 binding in healthy subjects and Alzheimer's disease (AD) patients, and to provide a preliminary assessment whether there is a disease-related signal. Ten AD patients and six healthy subjects underwent a dynamic positron emission tomography (PET) study along with arterial sampling and a scan protocol of 150 minutes after administration of 250 ± 10 MBq [(18)F]DPA-714. The model that provided the best fits to tissue time activity curves (TACs) was selected based on Akaike Information Criterion and F-test. The reversible two tissue compartment plasma input model with blood volume parameter was the preferred model for quantification of [(18)F]DPA-714 kinetics, irrespective of scan duration, volume of interest, and underlying volume of distribution (VT). Simplified reference tissue model (SRTM)-derived binding potential (BPND) using cerebellar gray matter as reference tissue correlated well with plasma input-based distribution volume ratio (DVR). These data suggest that [(18)F]DPA-714 cannot be used for separating individual AD patients from healthy subjects, but further studies including TSPO binding status are needed to substantiate these findings.
  •  
6.
  • Knudsen, Gitte M, et al. (författare)
  • Guidelines for the content and format of PET brain data in publications and archives : A consensus paper
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 40:8, s. 1576-1585
  • Tidskriftsartikel (refereegranskat)abstract
    • It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.
  •  
7.
  • Lopes Alves, Isadora, et al. (författare)
  • Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging
  • 2021
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer’s disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials. Methods: Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database (www.oasis-brains.org). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-ε4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR (cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≤ 49.4) amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≤ 20.1). Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-ε4 carriers only. Results: Although highly correlated to DVR (ρ =.96), cortical SUVR overestimated DVR cross-sectionally and in annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR. Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-ε4 carriers alone further reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR (n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR, n = 1508 to n = 734 for DVR). Conclusion: Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-ε4 carriers only. Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials. These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug development.
  •  
8.
  • Lubberink, Mark, et al. (författare)
  • Myocardial Oxygen Extraction Fraction Measured Using Bolus Inhalation of O-15-Oxygen Gas and Dynamic PET
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:1, s. 60-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to determine the accuracy of oxygen extraction fraction (OEF) measurements using a dynamic scan protocol after bolus inhalation of O-15(2). The method of analysis was optimized by investigating potential reuse of myocardial blood flow (MBF), perfusable tissue fraction, and blood and lung spillover factors derived from separate O-15-water and (CO)-O-15 scans. Methods: Simulations were performed to assess the accuracy and precision of OEF for a variety of models in which different parameters from O-15-water and (CO)-O-15 scans were reused. Reproducibility was assessed in 8 patients who underwent one 10-min dynamic scan after bolus injection of 1.1 GBq of O-15-water, two 10-min dynamic scans after bolus inhalation of 1.4 GBq of O-15(2), and a 6-min static scan after bolus inhalation of 0.8 GBq of (CO)-O-15 for region-of-interest definition. Results: Simulations showed that accuracy and precision were lowest when all parameters were determined from the O-15(2) scan. The optimal accuracy and precision of OEF were obtained when fixing MBF, perfusable tissue fraction, and blood spillover to values derived from a O-15-water scan and estimating spillover from the pulmonary gas volume using an attenuation map. Optimal accuracy and precision were confirmed in the patient study, showing an OEF test-retest variability of 13% for the whole myocardium. Correction of spillover from pulmonary gas volume requires correction of the lung time-activity curve for pulmonary blood volume, which could equally well be obtained from a O-15-water rather than (CO)-O-15 scan. Conclusion: Measurement of OEF is possible using bolus inhalation of O-15(2) and a dynamic scan protocol, with optimal accuracy and precision when other relevant parameters, such as MBF, are derived from an additional O-15-water scan.
  •  
9.
  • van Assema, Danielle M. E., et al. (författare)
  • No evidence for additional blood-brain barrier P-glycoprotein dysfunction in Alzheimer's disease patients with microbleeds
  • 2012
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 32:8, s. 1468-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreased blood-brain barrier P-glycoprotein (Pgp) function has been shown in Alzheimer's disease (AD) patients using positron emission tomography (PET) with the radiotracer (R)-[C-11] verapamil. Decreased Pgp function has also been hypothesized to promote cerebral amyloid angiopathy (CAA) development. Here, we used PET and (R)-[C-11] verapamil to assess Pgp function in eighteen AD patients, of which six had microbleeds (MBs), presumably reflecting underlying CAA. No differences were found in binding potential and nonspecific volume of distribution of (R)-[C-11] verapamil between patient groups. These results provide no evidence for additional Pgp dysfunction in AD patients with MBs.
  •  
10.
  • van Assema, Danielle M. E., et al. (författare)
  • P-Glycoprotein Function at the Blood-Brain Barrier : Effects of Age and Gender
  • 2012
  • Ingår i: Molecular Imaging and Biology. - : Springer Science and Business Media LLC. - 1536-1632 .- 1860-2002. ; 14:6, s. 771-776
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeP-glycoprotein (Pgp) is an efflux transporter involved in transport of several compounds across the blood–brain barrier (BBB). Loss of Pgp function with increasing age may be involved in the development of age-related disorders, but this may differ between males and females. Pgp function can be quantified in vivo using (R)-[11C]verapamil and positron emission tomography. The purpose of this study was to assess global and regional effects of both age and gender on BBB Pgp function.ProceduresThirty-five healthy men and women in three different age groups were included. Sixty minutes dynamic (R)-[11C]verapamil scans with metabolite-corrected arterial plasma input curves were acquired. Grey matter time–activity curves were fitted to a validated constrained two-tissue compartment plasma input model, providing the volume of distribution (V T) of (R)-[11C]verapamil as outcome measure.ResultsIncreased V T of (R)-[11C]verapamil with aging was found in several large brain regions in men. Young and elderly women showed comparable V T values. Young women had higher V T compared with young men.ConclusionsDecreased BBB Pgp is found with aging; however, effects of age on BBB Pgp function differ between men and women.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy