SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lammertsma Adriaan A.) ;pers:(Eriksson Jonas)"

Search: WFRF:(Lammertsma Adriaan A.) > Eriksson Jonas

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mansor, Syahir, et al. (author)
  • Parametric Methods for Dynamic (11)C-Phenytoin PET Studies.
  • 2017
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 58:3, s. 479-483
  • Journal article (peer-reviewed)abstract
    • In this study, the performance of various methods for generating quantitative parametric images of dynamic (11)C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic (11)C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (VT) and influx rate (K1) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K1 and VT values. Results: Biases in VT observed with all parametric methods were less than 5%. For K1, spectral analysis showed a negative bias of 16%. The mean TRT variabilities of VT and K1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar VT and K1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric VT and K1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration.
  •  
2.
  • Bogdanović, Renée Marie, et al. (author)
  • (R)-[(11)C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance : Evaluation in a rat epilepsy model
  • 2014
  • In: Neuropharmacology. - : Elsevier BV. - 0028-3908 .- 1873-7064. ; 85, s. 104-112
  • Journal article (peer-reviewed)abstract
    • Neuroinflammation has been suggested as a key determinant of the intrinsic severity of epilepsy. Glial cell activation and associated inflammatory signaling can influence seizure thresholds as well as the pharmacodynamics and pharmacokinetics of antiepileptic drugs. Based on these data, we hypothesized that molecular imaging of microglia activation might serve as a tool to predict drug refractoriness of epilepsy. Brain uptake of (R)-[(11)C]PK11195, a ligand of the translocator protein 18 kDa and molecular marker of microglia activation, was studied in a chronic model of temporal lobe epilepsy in rats with selection of phenobarbital responders and non-responders. In rats with drug-sensitive epilepsy, (R)-[(11)C]PK11195 brain uptake values were comparable to those in non-epileptic controls. Analysis in non-responders revealed enhanced brain uptake of up to 39% in different brain regions. The difference might be related to the fact that non-responders exhibited higher baseline seizure frequencies than responders indicating a more pronounced intrinsic disease severity. In hippocampal sections, ED1 immunostaining argued against a general difference in microglia activation between both groups. Our data suggest that TSPO PET imaging might serve as a biomarker for drug resistance in temporal lobe epilepsy. However, it needs to be considered that our findings indicate that the TSPO PET data might merely reflect seizure frequency. Future experimental and clinical studies should further evaluate the validity of TSPO PET data to predict the response to phenobarbital and other antiepileptic drugs in longitudinal studies with scanning before drug exposure and with a focus on the early phase following an epileptogenic brain insult.
  •  
3.
  • Froklage, Femke E, et al. (author)
  • [11C]Flumazenil brain uptake is influenced by the blood-brain barrier efflux transporter P-glycoprotein.
  • 2012
  • In: EJNMMI Research. - 2191-219X. ; 2, s. 12-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: [11C]Flumazenil and positron emission tomography (PET) are used clinically to assess gamma-aminobutyric acid (GABA)-ergic function and to localize epileptic foci prior to resective surgery. Enhanced P-glycoprotein (P-gp) activity has been reported in epilepsy and this may confound interpretation of clinical scans if [11C]flumazenil is a P-gp substrate. The purpose of this study was to investigate whether [11C]flumazenil is a P-gp substrate.METHODS: [11C]Flumazenil PET scans were performed in wild type (WT) (n = 9) and Mdr1a/1b, (the genes that encode for P-gp) double knockout (dKO) (n = 10) mice, and in naive rats (n = 10). In parallel to PET scanning, [11C]flumazenil plasma concentrations were measured in rats. For 6 of the WT and 6 of the dKO mice a second, [11C]flumazenil scan was acquired after administration of the P-gp inhibitor tariquidar. Cerebral [11C]flumazenil concentrations in WT and Mdr1a/1b dKO mice were compared (genetic disruption model). Furthermore, pre and post P-gp-blocking cerebral [11C]flumazenil concentrations were compared in all animals (pharmacological inhibition model).RESULTS: Mdr1a/1b dKO mice had approximately 70% higher [11C]flumazenil uptake in the brain than WT mice. After administration of tariquidar, cerebral [11C]flumazenil uptake in WT mice increased by about 80% in WT mice, while it remained the same in Mdr1a/1b dKO mice. In rats, cerebral [11C]flumazenil uptake increased by about 60% after tariquidar administration. Tariquidar had only a small effect on plasma clearance of flumazenil.CONCLUSIONS: The present study showed that [11C]flumazenil is a P-gp substrate in rodents. Consequently, altered cerebral [11C]flumazenil uptake, as observed in epilepsy, may not reflect solely GABAA receptor density changes but also changes in P-gp activity.
  •  
4.
  • Syvänen, Stina, et al. (author)
  • Altered GABAA Receptor Density and Unaltered Blood-Brain Barrier Transport in a Kainate Model of Epilepsy : An In Vivo Study Using 11C-Flumazenil and PET.
  • 2012
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:12, s. 1974-1983
  • Journal article (peer-reviewed)abstract
    • The aim of the present study was to investigate if flumazenil blood-brain barrier transport and binding to the benzodiazepine site on the γ-aminobutyric acid A (GABA(A)) receptor complex is altered in an experimental model of epilepsy and subsequently to study if changes in P-glycoprotein (P-gp)-mediated efflux of flumazenil at the blood-brain barrier may confound interpretation of (11)C-flumazenil PET in epilepsy. METHODS: The transport of flumazenil across the blood-brain barrier and the binding to the benzodiazepine site on the GABA(A) receptors in 5 different brain regions was studied and compared between controls and kainate-treated rats, a model of temporal lobe epilepsy, with and without tariquidar pretreatment. In total, 29 rats underwent 2 consecutive (11)C-flumazenil PET scans, each one lasting 30 min. The tracer was mixed with different amounts of isotopically unmodified flumazenil (4, 20, 100, or 400 μg) to cover a wide range of receptor occupancies during the scan. Before the second scan, the rats were pretreated with a 3 or 15 mg/kg dose of the P-gp inhibitor tariquidar. The second scan was then obtained according to the same protocol as the first scan. RESULTS: GABA(A) receptor density, B(max), was estimated as 44 ± 2 ng⋅mL(-1) in the hippocampus and as 33 ± 2 ng⋅mL(-1) in the cerebellum, with intermediate values in the occipital cortex, parietal cortex, and caudate putamen. B(max) was decreased by 12% in kainate-treated rats, compared with controls. The radiotracer equilibrium dissociation constant, K(D), was similar in both rat groups and all brain regions and was estimated as 5.9 ± 0.9 ng⋅mL(-1). There was no difference in flumazenil transport across the blood-brain barrier between control and kainate-treated rats, and the effect of tariquidar treatment was similar in both rat groups. Tariquidar treatment also decreased flumazenil transport out of the brain by 73%, increased the volume of distribution in the brain by 24%, and did not influence B(max) or K(D), compared with baseline(.) CONCLUSION: B(max) was decreased in kainate-treated rats, compared with controls, but no alteration in the blood-brain barrier transport of flumazenil was observed. P-gp inhibition by tariquidar treatment increased brain concentrations of flumazenil in both groups, but B(max) estimates were not influenced, suggesting that (11)C-flumazenil scanning is not confounded by alterations in P-gp function.
  •  
5.
  • Syvänen, Stina, et al. (author)
  • [C-11]quinidine and [C-11]laniquidar PET imaging in a chronic rodent epilepsy model : Impact of epilepsy and drug-responsiveness
  • 2013
  • In: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:6, s. 764-775
  • Journal article (peer-reviewed)abstract
    • Introduction: To analyse the impact of both epilepsy and pharmacological modulation of P-glycoprotein on brain uptake and kinetics of positron emission tomography (PET) radiotracers [C-11]quinidine and [C-11]laniquidar.Methods: Metabolism and brain kinetics of both [C-11]quinidine and [C-11]laniquidar were assessed in naive rats, electrode-implanted control rats, and rats with spontaneous recurrent seizures. The latter group was further classified according to their response to the antiepileptic drug phenobarbital into "responders" and "non-responders". Additional experiments were performed following pre-treatment with the P-glycoprotein modulator tariquidar.Results: [C-11]quinidine was metabolized rapidly, whereas [C-11]laniquidar was more stable. Brain concentrations of both radiotracers remained at relatively low levels at baseline conditions. Tariquidar pre-treatment resulted in significant increases of [C-11]quinidine and [C-11]laniquidar brain concentrations. In the epileptic subgroup "non-responders", brain uptake of [C-11]quinidine in selected brain regions reached higher levels than in electrode-implanted control rats. However, the relative response to tariquidar did not differ between groups with full blockade of P-glycoprotein by 15 mg/kg of tariquidar. For [C-11]laniquidar differences between epileptic and control animals were only evident at baseline conditions but not after tariquidar pretreatment.Conclusions: We confirmed that both [C-11]quinidine and [C-11]laniquidar are P-glycoprotein substrates. At full P-gp blockade, tariquidar pre-treatment only demonstrated slight differences for [C-11]quinidine between drug-resistant and drug-sensitive animals.
  •  
6.
  • van der Veldt, Astrid A. M., et al. (author)
  • Rapid Decrease in Delivery of Chemotherapy to Tumors after Anti-VEGF Therapy : Implications for Scheduling of Anti-Angiogenic Drugs
  • 2012
  • In: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 21:1, s. 82-91
  • Journal article (peer-reviewed)abstract
    • Current strategies combining anti-angiogenic drugs with chemotherapy provide clinical benefit in cancer patients. It is assumed that anti-angiogenic drugs, such as bevacizumab, transiently normalize abnormal tumor vasculature and contribute to improved delivery of subsequent chemotherapy. To investigate this concept, a study was performed in non-small cell lung cancer (NSCLC) patients using positron emission tomography (PET) and radiolabeled docetaxel ([11C]docetaxel). In NSCLC, bevacizumab reduced both perfusion and net influx rate of [11C]docetaxel within 5 hr. These effects persisted after 4 days. The clinical relevance of these findings is notable, as there was no evidence for a substantial improvement in drug delivery to tumors. These findings highlight the importance of drug scheduling and advocate further studies to optimize scheduling of anti-angiogenic drugs.
  •  
7.
  • van der Veldt, Astrid A. M., et al. (author)
  • Toward Prediction of Efficacy of Chemotherapy : A Proof of Concept Study in Lung Cancer Patients Using [11C]docetaxel and Positron Emission Tomography
  • 2013
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:15, s. 4163-4173
  • Journal article (peer-reviewed)abstract
    • Purpose:Pharmacokinetics of docetaxel can be measured in vivo using positron emission tomography (PET) and a microdose of radiolabeled docetaxel ([11C]docetaxel). The objective of this study was to investigate whether a [11C]docetaxel PET microdosing study could predict tumor uptake of therapeutic doses of docetaxel.Experimental Design:Docetaxel-naïve lung cancer patients underwent 2 [11C]docetaxel PET scans; one after bolus injection of [11C]docetaxel and another during combined infusion of [11C]docetaxel and a therapeutic dose of docetaxel (75 mg·m−2). Compartmental and spectral analyses were used to quantify [11C]docetaxel tumor kinetics. [11C]docetaxel PET measurements were used to estimate the area under the curve (AUC) of docetaxel in tumors. Tumor response was evaluated using computed tomography scans.Results:Net rates of influx (Ki) of [11C]docetaxel in tumors were comparable during microdosing and therapeutic scans. [11C]docetaxel AUCTumor during the therapeutic scan could be predicted reliably using an impulse response function derived from the microdosing scan together with the plasma curve of [11C]docetaxel during the therapeutic scan. At 90 minutes, the accumulated amount of docetaxel in tumors was less than 1% of the total infused dose of docetaxel. [11C]docetaxel Ki derived from the microdosing scan correlated with AUCTumor of docetaxel (Spearman ρ = 0.715; P = 0.004) during the therapeutic scan and with tumor response to docetaxel therapy (Spearman ρ = −0.800; P = 0.010).Conclusions:Microdosing data of [11C]docetaxel PET can be used to predict tumor uptake of docetaxel during chemotherapy. The present study provides a framework for investigating the PET microdosing concept for radiolabeled anticancer drugs in patients.
  •  
8.
  • Verbeek, Joost, et al. (author)
  • [11C]phenytoin revisited : synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats.
  • 2012
  • In: EJNMMI Research. - 2191-219X. ; 2:1, s. 36-
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: At present, several positron emission tomography (PET) tracers are in use for imaging Pglycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[11C]verapamil display low brain concentrations with a distribution volume of around 1. [11C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [11C]phenytoin and to characterize its properties as a P-gp tracer. METHODS: [11C]CO was used to synthesize [11C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [11C]phenytoin were studied in rats. Effects of P-gp function on [11C]phenytoin uptake were assessed using predosing with tariquidar. RESULTS: [11C]phenytoin was synthesized via [11C]CO in an overall decay-corrected yield of 22 +/- 4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [11C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [11C]phenytoin. CONCLUSIONS: Using [11C]CO, the radiosynthesis of [11C]phenytoin could be improved. [11C]phenytoin appeared to be a rather weak P-gp substrate.
  •  
9.
  • Verbeek, Joost, et al. (author)
  • Synthesis and preliminary preclinical evaluation of fluorine-18 labelled isatin-4-(4-methoxyphenyl)-3-thiosemicarbazone ([18F]4FIMPTC) as a novel PET tracer of P-glycoprotein expression
  • 2018
  • In: EJNMMI Radiopharmacy and Chemistry. - : Springer. - 2365-421X. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Background: Several P-glycoprotein (P-gp) substrate tracers are available to assess P-gp function in vivo, but attempts to develop a tracer for measuring expression levels of P-gp have not been successful. Recently, (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide was described as a potential selective P-gp inhibitor that is not transported by P-gp. Therefore, the purpose of this study was to radiolabel two of its analogues and to assess their potential for imaging P-gp expression using PET.Results: [18F]2-(4-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide ([18F]5) and [18F]2-(6-fluoro-2-oxoindolin-3-ylidene)-N-(4-methoxyphenyl)hydrazine-carbothioamide ([18F]6) were synthesized and both their biodistribution and metabolism were evaluated in rats. In addition, PET scans were acquired in rats before and after tariquidar (P-gp inhibitor) administration as well as in P-gp knockout (KO) mice.Both [18F]5 and [18F]6 were synthesized in 2-3% overall yield, and showed high brain uptake in ex vivo biodistribution studies. [18F]6 appeared to be metabolically unstable in vivo, while [18F]5 showed moderate stability with limited uptake of radiolabelled metabolites in the brain. PET studies showed that transport of [18F]5 across the blood-brain barrier was not altered by pre-treatment with the P-gp inhibitor tariquidar, and uptake was significantly lower in P-gp KO than in wild-type animals and indeed transported across the BBB or bound to P-gp in endothelial cells.Conclusion: In conclusion, [18F]5 and [18F]6 were successfully and reproducibly synthesized, albeit with low radiochemical yields. [18F]5 appears to be a radiotracer that binds to P-gp, as showed in P-gp knock-out animals, but is not a substrate for P-gp.
  •  
10.
  • Golla, Sandeep S V, et al. (author)
  • Parametric Binding Images of the TSPO Ligand 18F-DPA-714.
  • 2016
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:10, s. 1543-1547
  • Journal article (peer-reviewed)abstract
    • (18)F-labeled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide (DPA-714) is a radioligand for the 18-kDa translocator protein. The purpose of the present study was to identify the best method for generating quantitative parametric images of (18)F-DPA-714 binding.METHODS: Ninety-minute dynamic (18)F-DPA-714 PET scans with full arterial sampling from 6 healthy subjects and 9 Alzheimer disease (AD) patients were used. Plasma-input-based Logan graphical analysis and spectral analysis were used to generate parametric volume of distribution (VT) images. Five versions of Ichise, reference Logan, and 2 basis function implementations (receptor parametric mapping and simplified reference tissue model 2 [SRTM2]) of SRTM, all using gray matter cerebellum as the reference region, were applied to generate nondisplaceable binding potential (BPND) images.RESULTS: Plasma-input Logan analysis (r(2) = 0.99; slope, 0.88) and spectral analysis (r(2) = 0.99, slope, 0.93) generated estimates of VT that correlated well with values obtained using nonlinear regression. BPND values generated using SRTM2 (r(2) = 0.83; slope, 0.95) and reference Logan analysis (r(2) = 0.88; slope, 1.01) correlated well with nonlinear regression-based estimates.CONCLUSION: Both Logan analysis and spectral analysis can be used to obtain quantitatively accurate VT images of (18)F-DPA-714. In addition, SRTM2 and reference Logan analysis can provide accurate BPND images. These parametric images could be used for voxel-based comparisons.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view