SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lammertsma Adriaan A.) ;pers:(Rijnierse Mischa T.)"

Sökning: WFRF:(Lammertsma Adriaan A.) > Rijnierse Mischa T.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stuijfzand, Wijnand J, et al. (författare)
  • Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease
  • 2015
  • Ingår i: Circulation Cardiovascular Imaging. - 1941-9651 .- 1942-0080. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Quantitative myocardial perfusion imaging is increasingly used for the diagnosis of coronary artery disease. Quantitative perfusion imaging allows to noninvasively calculate fractional flow reserve (FFR). This so-called relative flow reserve (RFR) is defined as the ratio of hyperemic myocardial blood flow (MBF) in a stenotic area to hyperemic MBF in a normal perfused area. The aim of this study was to assess the value of RFR in the detection of significant coronary artery disease.METHODS AND RESULTS: From a clinical population of patients with suspected coronary artery disease who underwent oxygen-15-labeled water cardiac positron emission tomography and invasive coronary angiography, 92 patients with single- or 2-vessel disease were included. Intermediate lesions (diameter stenosis, 30%-90%; n=75) were interrogated by FFR. Thirty-eight (41%) vessels were deemed hemodynamically significant (>90% stenosis or FFR≤0.80). Hyperemic MBF, coronary flow reserve, and RFR were lower for vessels with a hemodynamically significant lesion (2.01±0.78 versus 2.90±1.16 mL·min(-1)·g(-1); P<0.001, 2.27±1.03 versus 3.10±1.29; P<0.001, and 0.67±0.23 versus 0.93±0.15; P<0.001, respectively). The correlation between RFR and FFR was moderate (r=0.54; P<0.01). Receiver operator characteristic curve analysis showed an area under the curve of 0.82 for RFR, which was not significantly higher compared with that for hyperemic MBF and coronary flow reserve (0.76; P=0.32 and 0.72; P=0.08, respectively).CONCLUSIONS: Noninvasive estimation of FFR by quantitative perfusion positron emission tomography by calculating RFR is feasible, yet only a trend toward a slight improvement of diagnostic accuracy compared with hyperemic MBF assessment was determined.
  •  
2.
  • Harms, Hendrik J., et al. (författare)
  • Noninvasive Quantification of Myocardial C-11-Meta-Hydroxyephedrine Kinetics
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:9, s. 1376-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • C-11-meta-hydroxyephedrine (C-11-HED) kinetics in the myocardium can be quantified using a single-tissue-compartment model together with a metabolite-corrected arterial blood sampler input function (BSIF). The need for arterial blood sampling, however, limits clinical applicability. The purpose of this study was to investigate the feasibility of replacing arterial sampling with imaging-derived input function (IDIF) and venous blood samples. Methods: Twenty patients underwent 60-min dynamic C-11-HED PET/CT scans with online arterial blood sampling. Thirteen of these patients also underwent venous blood sampling. Data were reconstructed using both 3 dimensional row-action maximum-likelihood algorithm (3DR) and a time-of-flight (TF) list-mode reconstruction algorithm. For each reconstruction, IDIF results were compared with BSIF results. In addition, IDIF results obtained with venous blood samples and with a transformed venous-to-arterial metabolite correction were compared with results obtained with arterial metabolite corrections. Results: Correlations between IDIF- and BSIF-derived K-1 and V-T were high (r(2) > =0.89 for 3DR and TF). Slopes of the linear fits were significantly different from 1 for K-1, for both 3DR (slope = 0.94) and TF (slope = 1.06). For V-T, the slope of the linear fit was different from 1 for TF (slope = 0.93) but not for 3DR (slope = 0.98). Use of venous blood data introduced a large bias in V-T (r(2) = 0.96, slope = 0.84) and a small bias in K-1 (r(2) = 0.99, slope = 0.98). Use of a second-order polynomial venous-to-arterial transformation was robust and greatly reduced bias in V-T (r(2) = 0.97, slope = 0.99) with no effect on K-1. Conclusion: IDIF yielded precise results for both 3DR and TF. Venous blood samples can be used for absolute quantification of C-11-HED studies, provided a venous-to-arterial transformation is applied. A venous-to-arterial transformation enables noninvasive, absolute quantification of C-11-HED studies.
  •  
3.
  • Harms, Hendrik J, et al. (författare)
  • Quantification of [(11)C]-meta-hydroxyephedrine uptake in human myocardium
  • 2014
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The aims of this study were to determine the optimal tracer kinetic model for [(11)C]-meta-hydroxyephedrine ([(11)C]HED) and to evaluate the performance of several simplified methods.METHODS: Thirty patients underwent dynamic 60-min [(11)C]HED scans with online arterial blood sampling. Single-tissue and both reversible and irreversible two-tissue models were fitted to the data using the metabolite-corrected arterial input function. For each model, reliable fits were defined as those yielding outcome parameters with a coefficient of variation (CoV) <25%. The optimal model was determined using Akaike and Schwarz criteria and the F-test, together with the number of reliable fits. Simulations were performed to study accuracy and precision of each model. Finally, quantitative results obtained using a population-averaged metabolite correction were evaluated, and simplified retention index (RI) and standardized uptake value (SUV) results were compared with quantitative volume of distribution (V T) data.RESULTS: The reversible two-tissue model was preferred in 75.8% of all segments, based on the Akaike information criterion. However, V T derived using the single-tissue model correlated highly with that of the two-tissue model (r (2) = 0.94, intraclass correlation coefficient (ICC) = 0.96) and showed higher precision (CoV of 24.6% and 89.2% for single- and two-tissue models, respectively, at 20% noise). In addition, the single-tissue model yielded reliable fits in 94.6% of all segments as compared with 77.1% for the reversible two-tissue model. A population-averaged metabolite correction could not be used in approximately 20% of the patients because of large biases in V T. RI and SUV can provide misleading results because of non-linear relationships with V T.CONCLUSIONS: Although the reversible two-tissue model provided the best fits, the single-tissue model was more robust and results obtained were similar. Therefore, the single-tissue model was preferred. RI showed a non-linear correlation with V T, and therefore, care has to be taken when using RI as a quantitative measure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy