SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landén Mikael 1966) ;pers:(Sklar P)"

Sökning: WFRF:(Landén Mikael 1966) > Sklar P

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, S, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 1, s. 163-
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Bergen, S. E., et al. (författare)
  • Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder
  • 2012
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 17:9, s. 880-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders with overlapping susceptibility loci and symptomatology. We conducted a genome-wide association study (GWAS) of these disorders in a large Swedish sample. We report a new and independent case-control analysis of 1507 SCZ cases, 836 BD cases and 2093 controls. No single-nucleotide polymorphisms (SNPs) achieved significance in these new samples; however, combining new and previously reported SCZ samples (2111 SCZ and 2535 controls) revealed a genome-wide significant association in the major histocompatibility complex (MHC) region (rs886424, P = 4.54 x 10(-8)). Imputation using multiple reference panels and meta-analysis with the Psychiatric Genomics Consortium SCZ results underscored the broad, significant association in the MHC region in the full SCZ sample. We evaluated the role of copy number variants (CNVs) in these subjects. As in prior reports, deletions were enriched in SCZ, but not BD cases compared with controls. Singleton deletions were more frequent in both case groups compared with controls (SCZ: P = 0.003, BD: P = 0.013), whereas the largest CNVs (>500 kb) were significantly enriched only in SCZ cases (P = 0.0035). Two CNVs with previously reported SCZ associations were also overrepresented in this SCZ sample: 16p11.2 duplications (P = 0.0035) and 22q11 deletions (P = 0.03). These results reinforce prior reports of significant MHC and CNV associations in SCZ, but not BD.
  •  
7.
  • Charney, A. W., et al. (författare)
  • Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder
  • 2017
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a genome-wide association study of 6447 bipolar disorder (BD) cases and 12 639 controls from the International Cohort Collection for Bipolar Disorder (ICCBD). Meta-analysis was performed with prior results from the Psychiatric Genomics Consortium Bipolar Disorder Working Group for a combined sample of 13 902 cases and 19 279 controls. We identified eight genome-wide significant, associated regions, including a novel associated region on chromosome 10 (rs10884920; P = 3.28 x 10(-8)) that includes the brain-enriched cytoskeleton protein adducin 3 (ADD3), a non-coding RNA, and a neuropeptide-specific aminopeptidase P (XPNPEP1). Our large sample size allowed us to test the heritability and genetic correlation of BD subtypes and investigate their genetic overlap with schizophrenia and major depressive disorder. We found a significant difference in heritability of the two most common forms of BD (BD I SNP-h(2) = 0.35; BD II SNP-h(2) = 0.25; P = 0.02). The genetic correlation between BD I and BD II was 0.78, whereas the genetic correlation was 0.97 when BD cohorts containing both types were compared. In addition, we demonstrated a significantly greater load of polygenic risk alleles for schizophrenia and BD in patients with BD I compared with patients with BD II, and a greater load of schizophrenia risk alleles in patients with the bipolar type of schizoaffective disorder compared with patients with either BD I or BD II. These results point to a partial difference in the genetic architecture of BD subtypes as currently defined.
  •  
8.
  • Chen, C. Y., et al. (författare)
  • Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
  • 2018
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363-372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h 2 g) and genetic correlation (r g) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency-"coded-strict", "coded-broad", and "coded-broad based on a single clinical encounter" (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h 2 g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h 2 g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h 2 g) was 0.12 (p = 0.004). These h 2 g were lower or similar to the h 2 g observed by the ICCBD + PGCBD (0.23, p = 3.17E-80, total N = 33,181). However, the r g between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10-5), coded-strict (1.00, p = 2.40 × 10-4), and coded-broad (0.74, p = 8.11 × 10-7). The r g between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research.
  •  
9.
  • Genovese, G., et al. (författare)
  • Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia
  • 2016
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 19:11, s. 1433-1441
  • Tidskriftsartikel (refereegranskat)abstract
    • By analyzing the exomes of 12,332 unrelated Swedish individuals, including 4,877 individuals affected with schizophrenia, in ways informed by exome sequences from 45,376 other individuals, we identified 244,246 coding-sequence and splice-site ultra-rare variants (URVs) that were unique to individual Swedes. We found that gene-disruptive and putatively protein-damaging URVs (but not synonymous URVs) were more abundant among individuals with schizophrenia than among controls (P = 1.3 x 10(-10)). This elevation of protein-compromising URVs was several times larger than an analogously elevated rate for de novo mutations, suggesting that most rare-variant effects on schizophrenia risk are inherited. Among individuals with schizophrenia, the elevated frequency of protein-compromising URVs was concentrated in brain-expressed genes, particularly in neuronally expressed genes; most of this elevation arose from large sets of genes whose RNAs have been found to interact with synaptically localized proteins. Our results suggest that synaptic dysfunction may mediate a large fraction of strong, individually rare genetic influences on schizophrenia risk.
  •  
10.
  • Jia, X. M., et al. (författare)
  • Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26:9, s. 5239-5250
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 x 10(-4)), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy