SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lannfelt Lars) ;lar1:(lnu)"

Sökning: WFRF:(Lannfelt Lars) > Linnéuniversitetet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Codita, Alina, et al. (författare)
  • Impaired behavior of female tg-ArcSwe APP mice in the IntelliCage : A longitudinal study
  • 2010
  • Ingår i: Behavioural Brain Research. - : Elsevier BV. - 0166-4328 .- 1872-7549. ; 215:1, s. 83-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic animals expressing mutant human amyloid precursor protein (APP) are used as models for Alzheimer disease (AD). Ideally, behavioral tests improve the predictive validity of studies on animals by mirroring the functional impact of AD-like neuropathology. Learning and memory studies in APP transgenic models have been difficult to replicate. Standardization of procedures, automatization or improved protocol design can improve reproducibility. Here the IntelliCage, an automated system, was used for behavioral testing of APP female transgenic mice with both the Arctic and Swedish mutations, the tg-ArcSwe model. Protocols covering exploration, operant learning, place learning and extinction of place preference as well as passive avoidance tests were used for longitudinal characterization of behavior. Differences in exploratory activity were significant at four months of age, when plaque-free tg-ArcSwe mice visited less frequently the IntelliCage corners and initially performed fewer visits with licks compared to non-tg animals, inside the new environment. Fourteen months old tg-ArcSwe mice required a longer time to re-habituate to the IntelliCages than non-tg mice. At both ages tg-ArcSwe mice perseverated in place preference extinction test. Fourteen months old tg-ArcSwe mice were impaired in hippocampus-dependent spatial passive avoidance learning. This deficit was found to inversely correlate to calbindin-D28k immunoreactivity in the polymorphic layer of the dentate gyrus. Reduced water intake and body weight were observed in 4 months old tg-ArcSwe animals. The body weight difference increased with age. Thus behavioral and metabolic changes in the tg-ArcSwe APP model were detected using the IntelliCage, a system which provides the opportunity for standardized automated longitudinal behavioral phenotyping.
  •  
2.
  • Magnusson, Kristina, et al. (författare)
  • Specific Uptake of an Amyloid-beta Protofibril-Binding Antibody-Tracer in A beta PP Transgenic Mouse Brain
  • 2013
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 37:1, s. 29-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence suggests that amyloid-beta (A beta) protofibrils/oligomers are pathogenic agents in Alzheimer's disease (AD). Unfortunately, techniques enabling quantitative estimates of these species in patients or patient samples are still rather limited. Here we describe the in vitro and ex vivo characteristics of a new antibody-based radioactive ligand, [I-125]mAb158, which binds to A beta protofibrils with high affinity. [I-125]mAb158 was specifically taken up in brain of transgenic mice expressing amyloid-beta protein precursor (A beta PP) as shown ex vivo. This was in contrast to [I-125]mAb-Ly128 which does not bind to A beta. The uptake of intraperitoneally-administered [I-125]mAb158 into the brain was age- and time-dependent, and saturable in A beta PP transgenic mice with modest A beta deposition. Brain uptake was also found in young A beta PP transgenic mice that were devoid of A beta deposits, suggesting that [I-125]mAb158 targets soluble A beta protofibrils. The radioligand was diffusely located in the parenchyma, sometimes around senile plaques and only occasionally colocalized with cerebral amyloid angiopathy. A refined iodine-124-labeled version of mAb158 with much improved blood-brain barrier passage and a shorter plasma half-life might be useful for PET imaging of A beta protofibrils.
  •  
3.
  • Fagerqvist, Therese, et al. (författare)
  • Monoclonal antibodies selective for α-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and α-synuclein transgenic mice with the disease-causing A30P mutation
  • 2013
  • Ingår i: Journal of Neurochemistry. - : Wiley-Blackwell. - 0022-3042 .- 1471-4159. ; 126:1, s. 131-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Inclusions of intraneuronal alpha-synuclein (-synuclein) can be detected in brains of patients with Parkinson's disease and dementia with Lewy bodies. The aggregation of -synuclein is a central feature of the disease pathogenesis. Among the different -synuclein species, large oligomers/protofibrils have particular neurotoxic properties and should therefore be suitable as both therapeutic and diagnostic targets. Two monoclonal antibodies, mAb38F and mAb38E2, with high affinity and strong selectivity for large -synuclein oligomers were generated. These antibodies, which do not bind amyloid-beta or tau, recognize Lewy body pathology in brains from patients with Parkinson's disease and dementia with Lewy bodies and detect pathology earlier in -synuclein transgenic mice than linear epitope antibodies. An oligomer-selective sandwich ELISA, based on mAb38F, was set up to analyze brain extracts of the transgenic mice. The overall levels of -synuclein oligomers/protofibrils were found to increase with age in these mice, although the levels displayed a large interindividual variation. Upon subcellular fractionation, higher levels of -synuclein oligomers/protofibrils could be detected in the endoplasmic reticulum around the age when behavioral disturbances develop. In summary, our novel oligomer-selective -synuclein antibodies recognize relevant pathology and should be important tools to further explore the pathogenic mechanisms in Lewy body disorders. Moreover, they could be potential candidates both for immunotherapy and as reagents in an assay to assess a potential disease biomarker.
  •  
4.
  • Fagerqvist, Therese, et al. (författare)
  • Off-pathway α-synuclein oligomers seem to alter α-synuclein turnover in a cell model but lack seeding capability in vivo
  • 2013
  • Ingår i: Amyloid. - : Informa Healthcare. - 1350-6129 .- 1744-2818. ; 20:4, s. 233-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregated alpha-synuclein is the major component of Lewy bodies, protein inclusions observed in the brain in neurodegenerative disorders such as Parkinson's disease and dementia with Lewy bodies. Experimental evidence indicates that alpha-synuclein potentially can be transferred between cells and act as a seed to accelerate the aggregation process. Here, we investigated in vitro and in vivo seeding effects of alpha-synuclein oligomers induced by the reactive aldehyde 4-oxo-2-nonenal (ONE). As measured by a Thioflavin-T based fibrillization assay, there was an earlier onset of aggregation when alpha-synuclein oligomers were added to monomeric alpha-synuclein. In contrast, exogenously added alpha-synuclein oligomers did not induce aggregation in a cell model. However, cells overexpressing alpha-synuclein that were treated with the oligomers displayed reduced alpha-synuclein levels, indicating that internalized oligomers either decreased the expression or accelerated the degradation of transfected alpha-synuclein. Also in vivo there were no clear seeding effects, as intracerebral injections of alpha-synuclein oligomers into the neocortex of alpha-synuclein transgenic mice did not induce formation of proteinase K resistant alpha-synuclein pathology. Taken together, we could observe a seeding effect of the ONE-induced alpha-synuclein oligomers in a fibrillization assay, but neither in a cell nor in a mouse model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy