SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Le Marchand Loic) srt2:(2015-2019);pers:(Chen Chu)"

Sökning: WFRF:(Le Marchand Loic) > (2015-2019) > Chen Chu

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brenner, Darren R, et al. (författare)
  • Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia
  • 2015
  • Ingår i: Carcinogenesis. - : Oxford University Press. - 0143-3334 .- 1460-2180. ; 36:11, s. 1314-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10−8) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10−7) and MTMR2 at 11q21 (rs10501831, P = 3.1×10−6) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10−7) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10−4 for KCNIP4, represented by rs9799795) and AC (P = 2.16×10−4 for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.
  •  
2.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : a Mendelian randomization study
  • 2017
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
  •  
3.
  • Carreras-Torres, Robert, et al. (författare)
  • The causal relevance of body mass index in different histological types of lung cancer : a Mendelian randomization study
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Body mass index (BMI) is inversely associated with lung cancer risk in observational studies, even though it increases the risk of several other cancers, which could indicate confounding by tobacco smoking or reverse causality. We used the two-sample Mendelian randomization (MR) approach to circumvent these limitations of observational epidemiology by constructing a genetic instrument for BMI, based on results from the GIANT consortium, which was evaluated in relation to lung cancer risk using GWAS results on 16,572 lung cancer cases and 21,480 controls. Results were stratified by histological subtype, smoking status and sex. An increase of one standard deviation (SD) in BMI (4.65 Kg/m(2)) raised the risk for lung cancer overall (OR = 1.13; P = 0.10). This was driven by associations with squamous cell (SQ) carcinoma (OR = 1.45; P = 1.2 × 10(-3)) and small cell (SC) carcinoma (OR = 1.81; P = 0.01). An inverse trend was seen for adenocarcinoma (AD) (OR = 0.82; P = 0.06). In stratified analyses, a 1 SD increase in BMI was inversely associated with overall lung cancer in never smokers (OR = 0.50; P = 0.02). These results indicate that higher BMI may increase the risk of certain types of lung cancer, in particular SQ and SC carcinoma.
  •  
4.
  • Dai, Juncheng, et al. (författare)
  • Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci
  • 2019
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 40:3, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
  •  
5.
  • Ferreiro-Iglesias, Aida, et al. (författare)
  • Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer has several genetic associations identified within the major histocompatibility complex (MHC); although the basis for these associations remains elusive. Here, we analyze MHC genetic variation among 26,044 lung cancer patients and 20,836 controls densely genotyped across the MHC, using the Illumina Illumina OncoArray or Illumina 660W SNP microarray. We impute sequence variation in classical HLA genes, fine-map MHC associations for lung cancer risk with major histologies and compare results between ethnicities. Independent and novel associations within HLA genes are identified in Europeans including amino acids in the HLA-B*0801 peptide binding groove and an independent HLA-DQB1*06 loci group. In Asians, associations are driven by two independent HLA allele sets that both increase risk in HLA-DQB1*0401 and HLA-DRB1*0701; the latter better represented by the amino acid Ala-104. These results implicate several HLA-tumor peptide interactions as the major MHC factor modulating lung cancer susceptibility.
  •  
6.
  • Ji, Xuemei, et al. (författare)
  • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
  •  
7.
  • Kachuri, Linda, et al. (författare)
  • Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci
  • 2016
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 37:1, s. 96-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000x) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73x10(-9)), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64x10(-6)), rs112290073 (OR = 1.85, P = 1.27x10(-5)), rs138895564 (OR = 2.16, P = 2.06x10(-5); among young cases, OR = 3.77, P = 8.41x10(-4)). In addition, we found that rs139852726 (P = 1.44x10(-3)) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84x10(-7)) and lung cancer (P = 2.37x10(-5)) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism.
  •  
8.
  • Key, Timothy J., et al. (författare)
  • Carotenoids, retinol, tocopherols, and prostate cancer risk : pooled analysis of 15 studies
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1142-1157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Individual studies have suggested that circulating carotenoids, retinol, or tocopherols may be associated with prostate cancer risk, but the studies have not been large enough to provide precise estimates of associations, particularly by stage and grade of disease. Objective: The objective of this study was to conduct a pooled analysis of the associations of the concentrations of 7 carotenoids, retinol, alpha-tocopherol, and gamma-tocopherol with risk of prostate cancer and to describe whether any associations differ by stage or grade of the disease or other factors. Design: Principal investigators of prospective studies provided individual participant data for prostate cancer cases and controls. Risk by study-specific fifths of each biomarker was estimated by using multivariable-adjusted conditional logistic regression in matched case-control sets. Results: Data were available for up to 11,239 cases (including 1654 advanced stage and 1741 aggressive) and 18,541 controls from 15 studies. Lycopene was not associated with overall risk of prostate cancer, but there was statistically significant heterogeneity by stage of disease, and the OR for aggressive disease for the highest compared with the lowest fifth of lycopene was 0.65 (95% CI: 0.46, 0.91; P-trend = 0.032). No other carotenoid was significantly associated with overall risk of prostate cancer or with risk of advanced-stage or aggressive disease. For retinol, the OR for the highest compared with the lowest fifth was 1.13 (95% CI: 1.04, 1.22; P-trend = 0.015). For alpha-tocopherol, the OR for the highest compared with the lowest fifth was 0.86 (95% CI: 0.78, 0.94; P-trend < 0.001), with significant heterogeneity by stage of disease; the OR for aggressive prostate cancer was 0.74 (95% CI: 0.59, 0.92; P-trend = 0.001). gamma-Tocopherol was not associated with risk. Conclusions: Overall prostate cancer risk was positively associated with retinol and inversely associated with alpha-tocopherol, and risk of aggressive prostate cancer was inversely associated with lycopene and alpha-tocopherol. Whether these associations reflect causal relations is unclear.
  •  
9.
  • Li, Yafang, et al. (författare)
  • Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development
  • 2019
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 10:19, s. 1760-1774
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes.
  •  
10.
  • Li, Yafang, et al. (författare)
  • Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population
  • 2018
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 39:3, s. 336-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13 336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13 970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy