SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leboyer M) srt2:(2005-2009);pers:(Gillberg Carina)"

Sökning: WFRF:(Leboyer M) > (2005-2009) > Gillberg Carina

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Durand, Christelle. M., et al. (författare)
  • Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:1, s. 25-27
  • Tidskriftsartikel (refereegranskat)abstract
    • SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders.
  •  
2.
  • Gong, Xiaohong, et al. (författare)
  • An investigation of ribosomal protein L10 gene in autism spectrum disorders.
  • 2009
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Autism spectrum disorders (ASD) are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10) gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of RPL10, L206M and H213Q, were identified in four boys with ASD. Moreover, functional studies of mutant RPL10 in yeast exhibited aberrant ribosomal profiles. These results provided a novel aspect of disease mechanisms for autism - aberrant processes of ribosome biosynthesis and translation. To confirm these initial findings, we re-sequenced RPL10 exons and quantified mRNA transcript level of RPL10 in our samples. METHODS: 141 individuals with ASD were recruited in this study. All RPL10 exons and flanking junctions were sequenced. Furthermore, mRNA transcript level of RPL10 was quantified in B lymphoblastoid cell lines (BLCL) of 48 patients and 27 controls using the method of SYBR Green quantitative PCR. Two sets of primer pairs were used to quantify the mRNA expression level of RPL10: RPL10-A and RPL10-B. RESULTS: No non-synonymous mutations were detected in our cohort. Male controls showed similar transcript level of RPL10 compared with female controls (RPL10-A, U=81, P=0.7; RPL10-B, U=61.5, P=0.2). We did not observe any significant difference in RPL10 transcript levels between cases and controls (RPL10-A, U=531, P=0.2; RPL10-B, U=607.5, P=0.7). CONCLUSION: Our results suggest that RPL10 has no major effect on the susceptibility to ASD.
  •  
3.
  • Gong, Xiaohong, et al. (författare)
  • Analysis of X chromosome inactivation in autism spectrum disorders.
  • 2008
  • Ingår i: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. - : Wiley. - 1552-485X .- 1552-4841. ; 147B:6, s. 830-835
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes.
  •  
4.
  • Melke, Jonas, 1971, et al. (författare)
  • Abnormal melatonin synthesis in autism spectrum disorders.
  • 2008
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 13:1, s. 90-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level has been reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2 x 10(-10)). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2 x 10(-12)) and melatonin level (P=3 x 10(-11)) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy