SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leerink S.) "

Sökning: WFRF:(Leerink S.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Ham, C. J., et al. (författare)
  • Towards understanding reactor relevant tokamak pedestals
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The physics of the tokamak pedestal is still not fully understood, for example there is no fully predictive model for the pedestal height and width. However, the pedestal is key in determining the fusion power for a given scenario. If we can improve our understanding of reactor relevant pedestals we will improve our confidence in designing potential fusion power plants. Work has been carried out as part of a collaboration on reactor relevant pedestal physics. We report some of the results in detail here and review some of the wider work which will be reported in full elsewhere. First, we attempt to use a gyrokinetic-based calculation to eliminate the pedestal top density as a model input for Europed/EPED pedestal predictions. We assume power balance at the top of the pedestal, that is, the heat flux crossing the separatrix must be equal to the heat source at the top of the pedestal and investigate the consequences of this assumption. Unfortunately, the transport assumptions of the EPED model mean that this method does not discriminate between different pairs of density and temperature profiles for a given pressure profile. Second, we investigate the effects of non flux surface density on the bootstrap current. Third, type I ELMs will not be tolerable for a reactor relevant regime due to the damage that they are expected to cause to plasma facing components. In recent years various methods of running tokamak plasmas without large ELMs have been developed. These include small and no ELM regimes, the use of resonant magnetic perturbations and the use of vertical kicks. We discuss the quiescent H-mode here. Finally we give a summary and directions for future work.
  •  
6.
  • Tala, T., et al. (författare)
  • Role of NBI fuelling in contributing to density peaking between the ICRH and NBI identity plasmas on JET
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Density peaking has been studied between an ICRH and NBI identity plasma in JET. The comparison shows that 8 MW of NBI heating/fueling increases the density peaking by a factor of two, being R/L (n) = 0.45 for the ICRH pulse and R/L (n) = 0.93 for the NBI one averaged radially over rho (tor) = 0.4, 0.8. The dimensionless profiles of q, rho *, upsilon *, beta (n) and T (i)/T (e) approximate to 1 were matched within 5% difference except in the central part of the plasma (rho (tor) < 0.3). The difference in the curvature pinch (same q-profile) and thermo-pinch (T (i) = T (e)) between the ICRH and NBI discharges is virtually zero. Both the gyro-kinetic simulations and integrated modelling strongly support the experimental result where the NBI fuelling is the main contributor to the density peaking for this identity pair. It is to be noted here that the integrated modeling does not reproduce the measured electron density profiles, but approximately reproduces the difference in the density profiles between the ICRH and NBI discharge. Based on these modelling results and the analyses, the differences between the two pulses in impurities, fast ions (FIs), toroidal rotation and radiation do not cause any such changes in the background transport that would invalidate the experimental result where the NBI fuelling is the main contributor to the density peaking. This result of R/L (n) increasing by a factor of 2 per 8 MW of NBI power is valid for the ion temperature gradient dominated low power H-mode plasmas. However, some of the physics processes influencing particle transport, like rotation, turbulence and FI content scale with power, and therefore, the simple scaling on the role of the NBI fuelling in JET is not necessarily the same under higher power conditions or in larger devices.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy