SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lemmens Robin) ;pers:(Slowik Agnieszka)"

Sökning: WFRF:(Lemmens Robin) > Slowik Agnieszka

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ay, Hakan, et al. (författare)
  • Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network
  • 2014
  • Ingår i: Stroke. - 0039-2499. ; 45:12, s. 3589-3596
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: NINDS (National Institute of Neurological Disorders and Stroke)-SiGN (Stroke Genetics Network) is an international consortium of ischemic stroke studies that aims to generate high-quality phenotype data to identify the genetic basis of pathogenic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. METHODS: Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major pathogenic groups without weighting toward the most likely cause) and causative ischemic stroke subtypes in 16 954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded readjudication of 1509 randomly selected cases. RESULTS: The distribution of pathogenic categories varied by study, age, sex, and race (P<0.001 for each). Overall, only 40% to 54% of cases with a given major ischemic stroke pathogenesis (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (κ 0.72; 95% confidence interval, 0.69-0.75) and phenotypic classifications (κ 0.73; 95% confidence interval, 0.70-0.75). CONCLUSIONS: This study demonstrates that pathogenic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a patient with stroke does not necessarily mean that it is the cause of stroke.
  •  
2.
  • Bellenguez, Celine, et al. (författare)
  • Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:3, s. 141-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 x 10(-11); odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
  •  
3.
  • Blauw, Hylke M, et al. (författare)
  • A large genome scan for rare CNVs in amyotrophic lateral sclerosis
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford Journals. - 0964-6906 .- 1460-2083. ; 19:20, s. 4091-4099
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease selectively affecting motor neurons in the brain and spinal cord. Recent genome-wide association studies (GWASs) have identified several common variants which increase disease susceptibility. In contrast, rare copy-number variants (CNVs), which have been associated with several neuropsychiatric traits, have not been studied for ALS in well-powered study populations. To examine the role of rare CNVs in ALS susceptibility, we conducted a CNV association study including over 19,000 individuals. In a genome-wide screen of 1875 cases and 8731 controls, we did not find evidence for a difference in global CNV burden between cases and controls. In our association analyses, we identified two loci that met our criteria for follow-up: the DPP6 locus (OR = 3.59, P = 6.6 × 10(-3)), which has already been implicated in ALS pathogenesis, and the 15q11.2 locus, containing NIPA1 (OR = 12.46, P = 9.3 × 10(-5)), the gene causing hereditary spastic paraparesis type 6 (HSP 6). We tested these loci in a replication cohort of 2559 cases and 5887 controls. Again, results were suggestive of association, but did not meet our criteria for independent replication: DPP6 locus: OR = 1.92, P = 0.097, pooled results: OR = 2.64, P = 1.4 × 10(-3); NIPA1: OR = 3.23, P = 0.041, pooled results: OR = 6.20, P = 2.2 × 10(-5)). Our results highlight DPP6 and NIPA1 as candidates for more in-depth studies. Unlike other complex neurological and psychiatric traits, rare CNVs with high effect size do not play a major role in ALS pathogenesis.
  •  
4.
  • Bogaert, Elke, et al. (författare)
  • Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis
  • 2012
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 33:2, s. 418-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Excitotoxicity is thought to play a pathogenic role in amyotrophic lateral sclerosis (ALS). Excitotoxic motor neuron death is mediated through the Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type of glutamate receptors and Ca(2+) permeability is determined by the GluR2 subunit. We investigated whether polymorphisms or mutations in the GluR2 gene (GRIA2) predispose patients to ALS. Upon sequencing 24 patients and 24 controls no nonsynonymous coding variants were observed but 24 polymorphisms were identified, 9 of which were novel. In a screening set of 310 Belgian ALS cases and 794 healthy controls and a replication set of 3157 cases and 5397 controls from 6 additional populations no association with susceptibility, age at onset, or disease duration was observed. We conclude that polymorphisms in the GluR2 gene (GRIA2) are not a major contributory factor in the pathogenesis of ALS.
  •  
5.
  • Bonkhoff, Anna K, et al. (författare)
  • The relevance of rich club regions for functional outcome post-stroke is enhanced in women.
  • 2023
  • Ingår i: Human brain mapping. - : Wiley. - 1097-0193 .- 1065-9471. ; 44:4, s. 1579-1592
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.
  •  
6.
  • Bretzner, Martin, et al. (författare)
  • Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke.
  • 2023
  • Ingår i: Neurology. - 1526-632X .- 0028-3878. ; 100:8, s. e822-e833
  • Tidskriftsartikel (refereegranskat)abstract
    • While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes.We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input.We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes.T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.
  •  
7.
  • Giese, Anne Katrin, et al. (författare)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke : The MRI-GENIE study
  • 2017
  • Ingår i: Neurology: Genetics. - 2376-7839. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributedMRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include themanual and automated assessments of established MRI markers. A high-throughputMRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
8.
  • Giese, Anne Katrin, et al. (författare)
  • White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype
  • 2020
  • Ingår i: Neurology. - 0028-3878. ; 95:1, s. 79-88
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS).MethodsFor the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes.ResultsPatients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001).ConclusionIn this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.
  •  
9.
  • Malik, Rainer, et al. (författare)
  • Low-frequency and common genetic variation in ischemic stroke : The METASTROKE collaboration
  • 2016
  • Ingår i: Neurology. - 1526-632X. ; 86:13, s. 26-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes.METHODS: We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p < 1E-5) in the discovery phase for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the p value distribution for different bins of allele frequencies for all IS and stroke subtypes.RESULTS: We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency <5%) for both LVD and small vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and 30%) for CE (all p < 1E-5).CONCLUSIONS: Our findings suggest that the missing heritability in IS subtypes can in part be attributed to low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes.
  •  
10.
  • Marto, João Pedro, et al. (författare)
  • Safety and Outcome of Revascularization Treatment in Patients With Acute Ischemic Stroke and COVID-19: The Global COVID-19 Stroke Registry.
  • 2023
  • Ingår i: Neurology. - 1526-632X. ; 100:7, s. e739-e750
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19-related inflammation, endothelial dysfunction, and coagulopathy may increase the bleeding risk and lower the efficacy of revascularization treatments in patients with acute ischemic stroke (AIS). We aimed to evaluate the safety and outcomes of revascularization treatments in patients with AIS and COVID-19.This was a retrospective multicenter cohort study of consecutive patients with AIS receiving intravenous thrombolysis (IVT) and/or endovascular treatment (EVT) between March 2020 and June 2021 tested for severe acute respiratory syndrome coronavirus 2 infection. With a doubly robust model combining propensity score weighting and multivariate regression, we studied the association of COVID-19 with intracranial bleeding complications and clinical outcomes. Subgroup analyses were performed according to treatment groups (IVT-only and EVT).Of a total of 15,128 included patients from 105 centers, 853 (5.6%) were diagnosed with COVID-19; of those, 5,848 (38.7%) patients received IVT-only and 9,280 (61.3%) EVT (with or without IVT). Patients with COVID-19 had a higher rate of symptomatic intracerebral hemorrhage (SICH) (adjusted OR 1.53; 95% CI 1.16-2.01), symptomatic subarachnoid hemorrhage (SSAH) (OR 1.80; 95% CI 1.20-2.69), SICH and/or SSAH combined (OR 1.56; 95% CI 1.23-1.99), 24-hour mortality (OR 2.47; 95% CI 1.58-3.86), and 3-month mortality (OR 1.88; 95% CI 1.52-2.33). Patients with COVID-19 also had an unfavorable shift in the distribution of the modified Rankin score at 3 months (OR 1.42; 95% CI 1.26-1.60).Patients with AIS and COVID-19 showed higher rates of intracranial bleeding complications and worse clinical outcomes after revascularization treatments than contemporaneous non-COVID-19 patients receiving treatment. Current available data do not allow direct conclusions to be drawn on the effectiveness of revascularization treatments in patients with COVID-19 or to establish different treatment recommendations in this subgroup of patients with ischemic stroke. Our findings can be taken into consideration for treatment decisions, patient monitoring, and establishing prognosis.The study was registered under ClinicalTrials.gov identifier NCT04895462.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy