Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lesage S) "

Sökning: WFRF:(Lesage S)

  • Resultat 1-10 av 39
  • [1]234Nästa
Sortera/gruppera träfflistan
  • Botvinik-Nezer, Rotem, et al. (författare)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  • Guerreiro, R., et al. (författare)
  • Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study
  • 2018
  • Ingår i: Lancet Neurology. - : Lancet Ltd. - 1474-4422. ; 17:1, s. 64-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson's disease, and Alzheimer's disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected after participant examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also only in participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2.40, 95% CI 2.14-2.70; p=1.05 x 10-48), SNCA (rs7681440; OR 0.73, 0.66-0.81; p=6.39 x 10(-10)), and GBA (rs35749011; OR 2.55, 1.88-3.46; p=1.78 x 10(-9)). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1.51, 1.27-1.79; p=2.32 x 10(-6)); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease.
  • Guerreiro, R., et al. (författare)
  • Heritability and genetic variance of dementia with Lewy bodies
  • 2019
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961. ; 127, s. 492-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either Parkinson's disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants. © 2019 Elsevier Inc.
  • Heckman, Michael G., et al. (författare)
  • Population-specific Frequencies for LRRK2 Susceptibility Variants in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium
  • 2013
  • Ingår i: Movement Disorders. - : John Wiley and Sons. - 0885-3185. ; 28:12, s. 1740-1744
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundVariants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. MethodsThe Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. ResultsHerein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. ConclusionsEstablishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies. (c) 2013 International Parkinson and Movement Disorder Society
  • Theuns, J., et al. (författare)
  • Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease
  • 2014
  • Ingår i: Neurology. - : American Academy of Neurology. - 1526-632X. ; 83:21, s. 13-1906
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort. METHODS: C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia. RESULTS: A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low. CONCLUSIONS: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease.
  • Orme, T., et al. (författare)
  • Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies
  • 2020
  • Ingår i: Acta neuropathologica communications. - : BioMed Central (BMC). - 2051-5960. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.
  • Ross, Owen A., et al. (författare)
  • Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study
  • 2011
  • Ingår i: Lancet Neurology. - : Lancet Ltd. - 1474-4465. ; 10:10, s. 898-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinson's disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. Methods LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0.5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. Findings 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1.43, 95% CI 1.15-1.78; p=0.0012) and Asian individuals (A419V, 2.27, 1.35-3.83; p=0.0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0.82, 0.72-0.94; p=0.0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1.73, 1.20-2.49; p=0.0026), but no association was noted for R1628P (0.62, 0.36-1.07; p=0.087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4.48, 133-15.09; p=0.012). Interpretation The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. Funding Michael J Fox Foundation and National Institutes of Health.
  • Hugot, JP, et al. (författare)
  • Clustering of Crohn's disease within affected sibships
  • 2003
  • Ingår i: European Journal of Human Genetics. - 1018-4813 .- 1476-5438. ; 11:2, s. 179-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Crohn's disease (CD) is a complex genetic disorder for which aetiology is unknown. Recently, genetic factors for susceptibility have been described. Several genetic loci have been mapped and partially explain the familial aggregations of the disease. However, environmental factors may also contribute to these aggregations. We considered that if the role of non-genetic factors was negligible, CD patients would be randomly distributed in sibships with multiple affected siblings. On the other hand if there was a significant environmental contribution, the siblings would be affected non-randomly over exposure status. In order to test this hypothesis, we studied 102 sibships with two or more affected siblings. A statistical test, named Cluster of Affected Sibling Test or CAST, was developed, based on the exact calculation of the probability of observing a given number of clusters of affected siblings in multiplex families. The null hypothesis of a random distribution of affected siblings was rejected (P=0,005). The observed excess of affected sibling clusters indicates that birth order influences the disease status. Considering that an adjacent order of birth is a global estimate of environmental sharing, this observation strongly suggests that environmental factors contribute to the observed familial aggregations of the disease. This observation provides evidence that familial CD is a relevant tool for further studies of environmental factors and gene-environment interaction. More generally, the CAST statistics may be widely applicable to estimate the involvement of environmental factors in the aetiology of other binary traits which may be observed in multiple members of the same sibship.
  • Nijkamp, P., et al. (författare)
  • Towards a regional science academy : A manifesto
  • 2016
  • Ingår i: Region. - : European Regional Science Association. - 2409-5370. ; 3:1, s. R1-R16
  • Tidskriftsartikel (refereegranskat)abstract
    • This Manifesto provides a joint proposal to create a Regional Science Academy as a think-tank support platform for a strategic development of the spatial sciences. The Regional Science Academy is a strategic spatial knowledge catalyst: it acts as a global intellectual powerhouse for new knowledge network initiatives and scholarly views on regions and cities as vital centrepieces of interconnected spatial systems. This contribution highlights its role and presents various activity plans. 
  • Sharma, Manu, et al. (författare)
  • Large-scale replication and heterogeneity in Parkinson disease genetic loci
  • 2012
  • Ingår i: Neurology. - : American Academy of Neurology. - 1526-632X. ; 79:7, s. 67-659
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown.METHODS: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry.RESULTS: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD.CONCLUSION: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
  • [1]234Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy