SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leuzy Antoine) ;mspu:(article)"

Sökning: WFRF:(Leuzy Antoine) > Tidskriftsartikel

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Emelie, et al. (författare)
  • Blood and cerebrospinal fluid neurofilament light differentially detect neurodegeneration in early Alzheimer's disease
  • 2020
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 95, s. 143-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) neurofilament light (NfL) concentration has reproducibly been shown to reflect neurodegeneration in brain disorders, including Alzheimer's disease (AD). NfL concentration in blood correlates with the corresponding CSF levels, but few studies have directly compared the reliability of these 2 markers in sporadic AD. Herein, we measured plasma and CSF concentrations of NfL in 478 cognitively unimpaired (CU) subjects, 227 patients with mild cognitive impairment, and 113 patients with AD dementia. We found that the concentration of NfL in CSF, but not in plasma, was increased in response to Aβ pathology in CU subjects. Both CSF and plasma NfL concentrations were increased in patients with mild cognitive impairment and AD dementia. Furthermore, only NfL in CSF was associated with reduced white matter microstructure in CU subjects. Finally, in a transgenic mouse model of AD, CSF NfL increased before serum NfL in response to the development of Aβ pathology. In conclusion, NfL in CSF may be a more reliable biomarker of neurodegeneration than NfL in blood in preclinical sporadic AD.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration
  • 2019
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is pathologically characterized by the accumulation of amyloid-β (Aβ) plaques, neurofibrillary tangles and widespread neuronal loss in the brain. In recent years, blood biomarkers have emerged as a realistic prospect to highlight accumulating pathology for secondary prevention trials. Neurofilament light chain (NfL), a marker of axonal degeneration, is robustly elevated in the blood of many neurological and neurodegenerative conditions, including AD. A strong relationship with cerebrospinal fluid (CSF) NfL suggests that these biomarker modalities reflect the same pathological process. Yet, the connection between blood NfL and brain tissue pathology has not been directly compared. In this study, longitudinal plasma NfL from cognitively healthy controls (n = 12) and AD participants (n = 57) were quantified by the Simoa platform. On reaching post-mortem, neuropathological assessment was performed on all participants, with additional frozen and paraffin-embedded tissue acquired from 26 participants for further biochemical (Aβ1-42, Aβ1-40, tau) and histological (NfL) evaluation. Plasma NfL concentrations were significantly increased in AD and correlated with cognitive decline, independent of age. Retrospective stratification based on Braak staging revealed that baseline plasma NfL concentrations were associated with higher neurofibrillary tangle pathology at post-mortem. Longitudinal increases in plasma NfL were observed in all Braak groupings; a significant negative association, however, was found between plasma NfL at time point 1 and both its rate of change and annual percentage increase. Immunohistochemical evaluation of NfL in the medial temporal gyrus (MTG) demonstrated an inverse relationship between Braak stages and NfL staining. Importantly, a significant negative correlation was found between the plasma NfL measurement closest to death and the level of NfL staining in the MTG at post-mortem. For the first time, we demonstrate that plasma NfL associates with the severity of neurofibrillary tangle pathology and neurodegeneration in the post-mortem brain.
  •  
4.
  • Benedet, Andréa L., et al. (författare)
  • Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals
  • 2019
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 11, s. 679-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Methods: Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ−) subjects. Results: Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. Discussion: These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects.
  •  
5.
  • Boccardi, M., et al. (författare)
  • The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. Methods We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. Results The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. Discussion This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.
  •  
6.
  • Cullen, Nicholas C., et al. (författare)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • Ingår i: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
7.
  • Cullen, Nicholas C., et al. (författare)
  • Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer’s Clinical Composite; R2 = 0.14, 95% CI [0.12–0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77–0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54–81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53–70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
  •  
8.
  • Dore, Vincent, et al. (författare)
  • CenTauRz : A standardized quantification of tau PET scans
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over the past decade, several PET tracers were developed to visualise and quantify tau pathology in vivo. However, all these tracers have distinct off-target binding, different dynamic ranges and likely different levels of non-specific binding resulting in large variability in semiquantification. We propose to standardise the sampling and the quantification across all available tau tracers. Method: 549 participants underwent tau scans with either 18F-FTP (Cognitively Unimpaired (CU)=54/AD=14), 18F-MK6240 (CU=186/AD=89), 18F-PI2620 (CU=17/AD=21), 18F-PM-PBB3 (CU=30/AD=28), 18F-GTP1 (CU=7/AD=38) or 18F-RO948 (CU=35/AD=30). All CU individuals were Aβ- and all AD were Aβ+. The tau scans were spatially normalized using CapAIBL and the cerebellar cortex was used as reference region. We constructed a “universal” tau mask from the intersection of all the specific tau tracer masks, after subtracting AD from CU. All tau PET studies were sampled with a Mesial Temporal (MTL) and a Meta Temporal (MetaT) composites constrained by the universal mask. For each tracer and in composite, the mean and standard deviation of the Aβ- CU SUVR for each tau tracer were used to generate z-scores (CenTauRz). Result: Using a threshold of 2 CenTauRz in the MetaT regions, all tracers highly discriminated Aβ+ AD from Aβ- CU (ACC=[0.94-1], sens=[0.84-1], spec=[0.96-1]) with mean CenTauRz for the different AD cohorts ranging from 8 to 14. Lower accuracy was observed in the MTL (ACC=[0.78-1]) due to lower sensitivity in some cohorts [0.65-1] however, the specificity was similar to that in the MetaT composite (spec=[0.94,1]). Conclusion: All tracers exhibited comparably high discriminative power to separate Aβ+ AD from Aβ- CU, where AD Aβ+ displayed a consistent range of CenTauRz across tracers. However, there were some differences between cohorts. For example, different PET scanners, with different sensitivities were used. For some cohorts, scans were selected as extreme representative cases, while for others the scans were more representative of clinical settings, with AD patients at early stages (with low or negative tau scans) or with suspected hippocampal sparing subtype that likely explains the lower accuracy in the MTL for some cohorts. Further studies with larger cohorts to validate the universal mask and CenTauRz scale are ongoing.
  •  
9.
  • Ferreira, Pamela C. L., et al. (författare)
  • Endocannabinoid System Biomarkers in Alzheimer's Disease
  • 2023
  • Ingår i: CANNABIS AND CANNABINOID RESEARCH. - : Mary Ann Liebert Inc. - 2578-5125 .- 2378-8763. ; 8:1, s. 77-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alterations in the endocannabinoid system (ES) have been described in Alzheimer's disease (AD) pathophysiology. In the past years, multiple ES biomarkers have been developed, promising to advance our understanding of ES changes in AD.Discussion: ES biomarkers, including positron emission tomography with cannabinoid receptors tracers and biofluid-based endocannabinoids, are associated with AD disease progression and pathological features.Conclusion: Although not specific enough for AD diagnosis, ES biomarkers hold promise for prognosis, drug-target engagement, and a better understanding of the disease. Here, we summarize currently available ES biomarker findings and discuss their potential applications in the AD research field.
  •  
10.
  • Groot, Colin, et al. (författare)
  • A biomarker profile of elevated CSF p-tau with normal tau PET is associated with increased tau accumulation rates on PET in early Alzheimer’s disease
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Different tau biomarkers become abnormal at different stages of Alzheimer’s disease (AD), with CSF p-tau typically being elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we selected a group of amyloid-β-positive (A+) individuals with elevated CSF p-tau levels but negative tau-PET scans and assessed longitudinal changes in tau-PET, cortical thickness and cognitive decline. Method: Individuals without dementia (i.e., cognitively unimpaired (CU) or mild cognitive impairment, n=231) were selected from the BioFINDER-2 study. These subjects were categorized into biomarker groups based on Gaussian mixture modelling to determine cut-offs for abnormal CSF Aβ42/40 (A; <0.078), CSF p-tau217 (P; >110 pg/ml) and [18F]RO948 tau-PET SUVR within a temporal meta-ROI (T; SUVR >1.40). Resulting groups were: A+P-T- (concordant, n=30), A+P+T- (discordant, n=48) and A+P+T+ (concordant, n=18). We additionally used 135 A- CU individuals (A- CU) as a reference group (Tables 1 and 2). Differences in annual change in regional tau-PET SUVR, cortical thickness and cognition between the A+P+T- group and the other groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures) education. Result: Longitudinal change in tau-PET was faster in the A+P+T- group than in the A- CU and A+P-T- groups across medial temporal and neocortical regions, with the medial temporal increases being more pronounced. The A+P+T- group showed slower rate of increases in tau-PET compared to the A+P+T+ group, primarily in neocortical regions (Figures 1 and 2). We did not detect differences in yearly change in cortical thickness (Figure 3) or in cognitive decline (Figure 3) between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Conclusion: These findings suggest that the A+P+T- biomarker profile is associated with early tau accumulation, and with relative sparing of cortical thinning and cognitive decline compared to A+P+T+ individuals. Therefore, the A+P+T- group represents an interesting target-group for early anti-tau interventions and for examining the emergence of tau aggregates in early AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
Typ av publikation
Typ av innehåll
refereegranskat (52)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Leuzy, Antoine (52)
Hansson, Oskar (37)
Stomrud, Erik (23)
Palmqvist, Sebastian (23)
Smith, Ruben (23)
Mattsson-Carlgren, N ... (21)
visa fler...
Strandberg, Olof (20)
Janelidze, Shorena (19)
Ossenkoppele, Rik (16)
Blennow, Kaj (10)
Zetterberg, Henrik (10)
Ashton, Nicholas J. (9)
Nordberg, Agneta (9)
Chiotis, Konstantino ... (9)
Schöll, Michael (7)
Jögi, Jonas (6)
Cullen, Nicholas C (6)
Pascoal, Tharick A (6)
Rosa-Neto, Pedro (6)
Klein, Gregory (6)
Borroni, Edilio (6)
Lilja, Johan (5)
Dage, Jeffrey L. (5)
Wall, Anders (5)
Rabinovici, Gil D (5)
La Joie, Renaud (5)
Iaccarino, Leonardo (5)
Blennow, Kaj, 1958 (4)
Zetterberg, Henrik, ... (4)
Groot, Colin (4)
Binette, Alexa Piche ... (4)
Ohlsson, Tomas (4)
Zimmer, Eduardo R. (4)
Savitcheva, Irina (4)
Pontecorvo, Michael ... (4)
Almkvist, Ove (3)
Aarsland, Dag (3)
Lubberink, Mark (3)
Rodriguez-Vieitez, E ... (3)
Tideman, Pontus (3)
Benedet, Andrea L (3)
Hye, Abdul (3)
Lessa Benedet, André ... (3)
Therriault, Joseph (3)
Gauthier, Serge (3)
Chamoun, Mira (3)
Saint-Aubert, Laure (3)
Bullich, Santiago (3)
Devous, Michael D (3)
Miller, Bruce L (3)
visa färre...
Lärosäte
Lunds universitet (41)
Göteborgs universitet (17)
Karolinska Institutet (15)
Uppsala universitet (12)
Stockholms universitet (3)
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy