SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leuzy Antoine) ;pers:(Blennow Kaj 1958)"

Sökning: WFRF:(Leuzy Antoine) > Blennow Kaj 1958

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashton, Nicholas J., et al. (författare)
  • An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders.
  • 2020
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4766 .- 1759-4758. ; 16, s. 265-284
  • Forskningsöversikt (refereegranskat)abstract
    • Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
  •  
2.
  • Janelidze, Shorena, et al. (författare)
  • Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma A beta 42/A beta 40 and p-tau
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:2, s. 283-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We studied usefulness of combining blood amyloid beta A(beta)42/A beta 40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain A beta deposition in different stages of early Alzheimer's disease (AD). Methods: Plasma biomarkers were measured using mass spectrometry (A beta 42/A beta 40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). Results: In CU, a combination of plasma A beta 42/A beta 40 and p-tau217 detected abnormal brain A beta status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or A beta 42/A beta 40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyappas.io/PredictAAbplasma/). Discussion:A combination of plasma A beta 42/A beta 40 and p-tau217 discriminated A beta status with relatively high accuracy, whereas p-tau217 showed strongest associations with A beta pathology in MCI but not in CU.
  •  
3.
  • Leuzy, Antoine, et al. (författare)
  • Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study.
  • 2016
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 139:Pt 9, s. 2540-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to assess the agreement between data on cerebral amyloidosis, derived using Pittsburgh compound B positron emission tomography and (i) multi-laboratory INNOTEST enzyme linked immunosorbent assay derived cerebrospinal fluid concentrations of amyloid-β42; (ii) centrally measured cerebrospinal fluid amyloid-β42 using a Meso Scale Discovery enzyme linked immunosorbent assay; and (iii) cerebrospinal fluid amyloid-β42 centrally measured using an antibody-independent mass spectrometry-based reference method. Moreover, we examined the hypothesis that discordance between amyloid biomarker measurements may be due to interindividual differences in total amyloid-β production, by using the ratio of amyloid-β42 to amyloid-β40 Our study population consisted of 243 subjects from seven centres belonging to the Biomarkers for Alzheimer's and Parkinson's Disease Initiative, and included subjects with normal cognition and patients with mild cognitive impairment, Alzheimer's disease dementia, frontotemporal dementia, and vascular dementia. All had Pittsburgh compound B positron emission tomography data, cerebrospinal fluid INNOTEST amyloid-β42 values, and cerebrospinal fluid samples available for reanalysis. Cerebrospinal fluid samples were reanalysed (amyloid-β42 and amyloid-β40) using Meso Scale Discovery electrochemiluminescence enzyme linked immunosorbent assay technology, and a novel, antibody-independent, mass spectrometry reference method. Pittsburgh compound B standardized uptake value ratio results were scaled using the Centiloid method. Concordance between Meso Scale Discovery/mass spectrometry reference measurement procedure findings and Pittsburgh compound B was high in subjects with mild cognitive impairment and Alzheimer's disease, while more variable results were observed for cognitively normal and non-Alzheimer's disease groups. Agreement between Pittsburgh compound B classification and Meso Scale Discovery/mass spectrometry reference measurement procedure findings was further improved when using amyloid-β42/40 Agreement between Pittsburgh compound B visual ratings and Centiloids was near complete. Despite improved agreement between Pittsburgh compound B and centrally analysed cerebrospinal fluid, a minority of subjects showed discordant findings. While future studies are needed, our results suggest that amyloid biomarker results may not be interchangeable in some individuals.
  •  
4.
  • Ossenkoppele, Rik, et al. (författare)
  • Tau PET correlates with different Alzheimer’s disease-related features compared to CSF and plasma p-tau biomarkers
  • 2021
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • PET, CSF and plasma biomarkers of tau pathology may be differentially associated with Alzheimer's disease (AD)-related demographic, cognitive, genetic and neuroimaging markers. We examined 771 participants with normal cognition, mild cognitive impairment or dementia from BioFINDER-2 (n=400) and ADNI (n=371). All had tau-PET ([18F]RO948 in BioFINDER-2, [18F]flortaucipir in ADNI) and CSF p-tau181 biomarkers available. Plasma p-tau181 and plasma/CSF p-tau217 were available in BioFINDER-2 only. Concordance between PET, CSF and plasma tau biomarkers ranged between 66 and 95%. Across the whole group, ridge regression models showed that increased CSF and plasma p-tau181 and p-tau217 levels were independently of tau PET associated with higher age, and APOEɛ4-carriership and Aβ-positivity, while increased tau-PET signal in the temporal cortex was associated withworse cognitive performance and reduced cortical thickness. We conclude that biofluid and neuroimaging markers of tau pathology convey partly independent information, with CSF and plasma p-tau181 and p-tau217 levels being more tightly linked with early markers of AD (especially Aβ-pathology), while tau-PET shows the strongest associations with cognitive and neurodegenerative markers of disease progression.
  •  
5.
  • Palmqvist, Sebastian, et al. (författare)
  • Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders
  • 2020
  • Ingår i: Jama-Journal of the American Medical Association. - : American Medical Association (AMA). - 0098-7484. ; 324:8, s. 772-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Key PointsQuestionWhat is the discriminative accuracy of plasma phospho-tau217 (P-tau217) for differentiating Alzheimer disease from other neurodegenerative disorders? FindingsIn this cross-sectional study that included 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated Alzheimer disease from other neurodegenerative diseases (area under the receiver operating characteristic curve of 0.89 in a neuropathologically defined cohort and 0.96 in a clinically defined cohort), with performance that was significantly better than established Alzheimer disease plasma- and MRI-based biomarkers but not significantly different from key CSF- or PET-based biomarkers. MeaningAlthough plasma P-tau217 was able to discriminate Alzheimer disease from other neurodegenerative diseases, further research is needed to validate the findings in unselected and diverse populations, optimize the assay, and determine its potential role in clinical care. ImportanceThere are limitations in current diagnostic testing approaches for Alzheimer disease (AD). ObjectiveTo examine plasma tau phosphorylated at threonine 217 (P-tau217) as a diagnostic biomarker for AD. Design, Setting, and ParticipantsThree cross-sectional cohorts: an Arizona-based neuropathology cohort (cohort 1), including 34 participants with AD and 47 without AD (dates of enrollment, May 2007-January 2019); the Swedish BioFINDER-2 cohort (cohort 2), including cognitively unimpaired participants (n=301) and clinically diagnosed patients with mild cognitive impairment (MCI) (n=178), AD dementia (n=121), and other neurodegenerative diseases (n=99) (April 2017-September 2019); and a Colombian autosomal-dominant AD kindred (cohort 3), including 365 PSEN1 E280A mutation carriers and 257 mutation noncarriers (December 2013-February 2017). ExposuresPlasma P-tau217. Main Outcomes and MeasuresPrimary outcome was the discriminative accuracy of plasma P-tau217 for AD (clinical or neuropathological diagnosis). Secondary outcome was the association with tau pathology (determined using neuropathology or positron emission tomography [PET]). ResultsMean age was 83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort 2, and 35.8 (SD, 10.7) years in cohort 3; 38% were women in cohort 1, 51% in cohort 2, and 57% in cohort 3. In cohort 1, antemortem plasma P-tau217 differentiated neuropathologically defined AD from non-AD (area under the curve [AUC], 0.89 [95% CI, 0.81-0.97]) with significantly higher accuracy than plasma P-tau181 and neurofilament light chain (NfL) (AUC range, 0.50-0.72; P<.05). The discriminative accuracy of plasma P-tau217 in cohort 2 for clinical AD dementia vs other neurodegenerative diseases (AUC, 0.96 [95% CI, 0.93-0.98]) was significantly higher than plasma P-tau181, plasma NfL, and MRI measures (AUC range, 0.50-0.81; P<.001) but not significantly different compared with cerebrospinal fluid (CSF) P-tau217, CSF P-tau181, and tau-PET (AUC range, 0.90-0.99; P>.15). In cohort 3, plasma P-tau217 levels were significantly greater among PSEN1 mutation carriers, compared with noncarriers, from approximately 25 years and older, which is 20 years prior to estimated onset of MCI among mutation carriers. Plasma P-tau217 levels correlated with tau tangles in participants with (Spearman rho =0.64; P<.001), but not without (Spearman =0.15; P=.33), beta -amyloid plaques in cohort 1. In cohort 2, plasma P-tau217 discriminated abnormal vs normal tau-PET scans (AUC, 0.93 [95% CI, 0.91-0.96]) with significantly higher accuracy than plasma P-tau181, plasma NfL, CSF P-tau181, CSF A beta 42:A beta 40 ratio, and MRI measures (AUC range, 0.67-0.90; P<.05), but its performance was not significantly different compared with CSF P-tau217 (AUC, 0.96; P=.22). Conclusions and RelevanceAmong 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated AD from other neurodegenerative diseases, with significantly higher accuracy than established plasma- and MRI-based biomarkers, and its performance was not significantly different from key CSF- or PET-based measures. Further research is needed to optimize the assay, validate the findings in unselected and diverse populations, and determine its potential role in clinical care. This cross-sectional study compares the accuracy of plasma tau phosphorylated at threonine 217 (P-tau217) levels vs other plasma-, MRI-, CSF-, and PET-based markers for distinguishing Alzheimer from other neurodegenerative diseases in 3 cohorts in Arizona, Sweden, and Columbia with or at risk for dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy