SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leuzy Antoine) ;pers:(Gauthier Serge)"

Sökning: WFRF:(Leuzy Antoine) > Gauthier Serge

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benedet, Andréa L., et al. (författare)
  • Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals
  • 2019
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 11, s. 679-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Methods: Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ−) subjects. Results: Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. Discussion: These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects.
  •  
2.
  • Lessa Benedet, Andréa, et al. (författare)
  • Stage-specific links between plasma neurofilament light and imaging biomarkers of Alzheimer's disease
  • 2020
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:12, s. 3793-3804
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NfL) is a marker of neuroaxonal injury, a prominent feature of Alzheimer's disease. It remains uncertain, however, how it relates to amyloid and tau pathology or neurodegeneration across the Alzheimer's disease continuum. The aim of this study was to investigate how plasma NfL relates to amyloid and tau PET and MRI measures of brain atrophy in participants with and without cognitive impairment. We retrospectively examined the association between plasma NfL and MRI measures of grey/white matter volumes in the Alzheimer's Disease Neuroimaging Initiative [ADNI: n = 1149; 382 cognitively unimpaired control subjects and 767 cognitively impaired participants (mild cognitive impairment n = 420, Alzheimer's disease dementia n = 347)]. Longitudinal plasma NfL was measured using single molecule array (Simoa) technology. Cross-sectional associations between plasma NfL and PET amyloid and tau measures were independently assessed in two cohorts: ADNI [n = 198; 110 cognitively unimpaired, 88 cognitively impaired (MCI n = 67, Alzheimer's disease dementia n = 21), data accessed October 2018]; and Translational Biomarkers in Aging and Dementia [TRIAD, n = 116; 74 cognitively unimpaired, 42 cognitively impaired (MCI n = 16, Alzheimer's disease dementia n = 26), data obtained November 2017 to January 2019]. Associations between plasma NfL and imaging-derived measures were examined voxel-wise using linear regression (cross-sectional) and linear mixed effect models (longitudinal). Cross-sectional analyses in both cohorts showed that plasma NfL was associated with PET findings in brain regions typically affected by Alzheimer's disease; associations were specific to amyloid PET in cognitively unimpaired and tau PET in cognitively impaired (P < 0.05). Longitudinal analyses showed that NfL levels were associated with grey/white matter volume loss; grey matter atrophy in cognitively unimpaired was specific to APOE ϵ4 carriers (P < 0.05). These findings suggest that plasma NfL increases in response to amyloid-related neuronal injury in preclinical stages of Alzheimer's disease, but is related to tau-mediated neurodegeneration in symptomatic patients. As such, plasma NfL may a useful measure to monitor effects in disease-modifying drug trials.
  •  
3.
  • Leuzy, Antoine, et al. (författare)
  • Use of amyloid PET across the spectrum of Alzheimer's disease : clinical utility and associated ethical issues
  • 2014
  • Ingår i: Amyloid. - : Informa UK Limited. - 1350-6129 .- 1744-2818. ; 21:3, s. 143-148
  • Forskningsöversikt (refereegranskat)abstract
    • Recent advances have made possible the in vivo detection of beta-amyloid (Ab) pathology using positron emission tomography. While the gold standard for amyloid imaging, carbon-11 labeled Pittsburgh compound B is increasingly being replaced by fluorine-18 labeled radiopharmaceuticals, with three already approved for clinical use by US and European regulatory bodies. Appropriate use criteria proposed by an amyloid imaging taskforce convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging recommend restricting use of this technology to the evaluation of patients with mild cognitive impairment or atypical dementia syndromes. While use among asymptomatic individuals is currently viewed as inappropriate due prognostic uncertainty, elevated levels of brain Ab among asymptomatic individuals may represent preclinical Alzheimer's disease. Amyloid imaging is likewise expected to play a role in the design of clinical trials. Though preliminary results suggest amyloid imaging to possess clinical utility and cost-effectiveness, both domains have yet to be assessed systematically. As the field moves toward adoption of a pro-disclosure stance for amyloid imaging findings, it is imperative that a broad range of stakeholders be involved to ensure the appropriateness of emerging policies and protocols.
  •  
4.
  • Pascoal, Tharick A., et al. (författare)
  • Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease
  • 2023
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The optimal combination of amyloid-β/tau/neurodegeneration (A/T/N) biomarker profiles for the diagnosis of Alzheimer's disease (AD) dementia is unclear. Methods: We examined the discriminative accuracy of A/T/N combinations assessed with neuroimaging biomarkers for the differentiation of AD from cognitively unimpaired (CU) elderly and non-AD neurodegenerative diseases in the TRIAD, BioFINDER-1 and BioFINDER-2 cohorts (total n = 832) using area under the receiver operating characteristic curves (AUC). Results: For the diagnosis of AD dementia (vs. CU elderly), T biomarkers performed as well as the complete A/T/N system (AUC range: 0.90–0.99). A and T biomarkers in isolation performed as well as the complete A/T/N system in differentiating AD dementia from non-AD neurodegenerative diseases (AUC range; A biomarker: 0.84–1; T biomarker: 0.83–1). Discussion: In diagnostic settings, the use of A or T neuroimaging biomarkers alone can reduce patient burden and medical costs compared with using their combination, without significantly compromising accuracy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy