SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lewis G) ;lar1:(slu)"

Sökning: WFRF:(Lewis G) > Sveriges Lantbruksuniversitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Keogan, Katharine, et al. (författare)
  • Global phenological insensitivity to shifting ocean temperatures among seabirds
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:4, s. 313-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproductive timing in many taxa plays a key role in determining breeding productivity(1), and is often sensitive to climatic conditions(2). Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey(3). This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers(4). However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction(5). Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (-0.020 days yr(-1)) or in response to sea surface temperature (SST) (-0.272 days degrees C-1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources(2).
  •  
4.
  • Larson, Greger, et al. (författare)
  • Current perspectives and the future of domestication studies
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:17, s. 6139-6146
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.
  •  
5.
  • Shaheen, S. M., et al. (författare)
  • Redox chemistry of vanadium in soils and sediments : Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications - A review
  • 2019
  • Ingår i: Advances in Colloid and Interface Science. - : Elsevier. - 0001-8686 .- 1873-3727. ; 265, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium (V), although serving as an important component of industrial activities, has bioinorganic implications to pose highly toxic hazards to humans and animals. Soils and sediments throughout the world exhibit wide ranges of vanadium concentrations. Although vanadium toxicity varies between different species, it is mainly controlled by soil redox potential (E H ). Nonetheless, knowledge of the redox geochemistry of vanadium lags in comparison to what is known about other potentially toxic elements (PTEs). In particular, the redox-induced speciation and mobilization of vanadium in soils and sediments and the associated risks to the environment have not been reviewed to date. Therefore, this review aims to address 1) the content and geochemical fate of vanadium in soils and sediments, 2) its redox-induced release dynamics, 3) redox-mediated chemical reactions between vanadium and soil organic and inorganic colloidal materials in soil solution, 4) its speciation in soil solution and soil-sediments, and 5) the use of advanced geochemical and spectroscopic techniques to investigate these complex systems. Vanadium (+5) is the most mobile and toxic form of its species while being the thermodynamically stable valence state in oxic environments, while vanadium (+3) might be expected to be predominant under euxinic (anoxic and sulfidic) conditions. Vanadium can react variably in response to changing soil E H : under anoxic conditions, the mobilization of vanadium can decrease because vanadium (+5) can be reduced to relatively less soluble vanadium (+4) via inorganic reactions such as with H 2 S and organic matter and by metal-reducing microorganisms. On the other hand, dissolved concentrations of vanadium can increase at low E H in many soils to reveal a similar pattern to that of Fe, which may be due to the reductive dissolution of Fe(hydr)oxides and the release of the associated vanadium. Those differences in vanadium release dynamics might occur as a result of the direct impact of E H on vanadium speciation in soil solution and soil sediments, and/or because of the E H -dependent changes in soil pH, chemistry of (Fe)(hydr)oxides, and complexation with soil organic carbon. Release dynamics of vanadium in soils may also be affected positively by soil pH and the release of aromatic organic compounds. X-ray absorption spectroscopy (XAS) is a powerful tool to investigate the speciation of vanadium present in soil. X-ray absorption near edge structure (XANES) is often used to constrain the average valence state of vanadium in soils and sediments, and in limited cases extended X-ray absorption fine structure (EXAFS) analysis has been used to determine the average molecular coordination environment of vanadium in soil components. In conclusion, this review presents the state of the art about the redox geochemistry of vanadium and thus contributes to a better understanding of the speciation, potential mobilization, and environmental hazards of vanadium in the near-surface environment of uplands, wetlands, and agricultural ecosystems as affected by various colloidal particles. Further research is needed to elucidate the geochemistry and speciation of vanadium in the dissolved, colloidal, and soil sediments phases, including the determination of factors that control the redox geochemistry of vanadium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Diaz, Sandra (1)
Vertessy, Beata G. (1)
Ostonen, Ivika (1)
visa fler...
Tedersoo, Leho (1)
Kim, K. H. (1)
Bond-Lamberty, Ben (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Zhang, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Nàgy, Péter (1)
Olsson, Olof (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Bonaldo, Paolo (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Gustafsson, Jon Pett ... (1)
Swärd, Karl (1)
Nilsson, Per (1)
De Milito, Angelo (1)
Rinklebe, J. (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Dunn, Michael J (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Isaac, Marney (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
Jin, Lei (1)
Chen, Qi (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Stockholms universitet (1)
Karlstads universitet (1)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy