SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Guo) ;hsvcat:2"

Sökning: WFRF:(Li Guo) > Teknik

  • Resultat 1-10 av 224
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
3.
  • Zhang, Li, et al. (författare)
  • Numerical simulation of natural convection and heat transfer in a molten pool with embedded cooling tubes
  • 2022
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media SA. - 2296-598X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • This study described the natural circulation and heat transfer of a molten pool in a specifically designed core catcher conceived for a pressurized water reactor. In addition to external cooling, the core catcher features internal cooling tubes embedded in the molten pool. To investigate the coolability in such a configuration, first, a full-scale core catcher simulation is conducted to give a preliminary study under a real SA situation. Results illustrated that cooling efficiency can be remarkably enhanced due to the inner tubes. Then a test facility of the 2D slice with the geometrical scaled factor of 1:4 has been developed, and molten salt (NaNO3-KNO3) experiments will be implemented in the near future. This study also performed a pre-test simulation using molten NaNO3-KNO3 as a stimulant to study the heat transfer and flow characteristics of the salt pool. The melt convection in the test section was represented by a two-dimensional mesh with a WMLES turbulence model using the FLUENT code. The simulation captured the heat transfer enhancement by the cooling tubes as expected, and the results would help decide the proper test matrix and improvement of instrumentation required to obtain the necessary data for code validation.
  •  
4.
  • Li, Jingjing, et al. (författare)
  • Photothermal Aerogel Beads Based on Polysaccharides: Controlled Fabrication and Hybrid Applications in Solar-Powered Interfacial Evaporation, Water Remediation, and Soil Enrichment
  • 2022
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 14:44, s. 50266-50279
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.
  •  
5.
  • Li, Yuan, et al. (författare)
  • Comparative Study of the Influence of Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries
  • 2020
  • Ingår i: IEEE Access. - : IEEE. - 2169-3536. ; 8, s. 17535-17547
  • Tidskriftsartikel (refereegranskat)abstract
    • The accurate state of charge (SoC) online estimation is a significant indicator that relates to driving ranges of electric vehicles (EV). The relationship between open circuit voltage (OCV) and SoC plays an important role in SoC estimation for lithium-ion batteries. To compare with the traditional incremental OCV (IO) test and the low current OCV (LO) test, a novel OCV test which combines IO test with LO test (CIL) is proposed in this paper. Based on the reliable parameters online identification of the dual polarization (DP) battery model, two SoC estimation algorithms are compared on the accuracy, robustness and convergence speed for the entire SoC region. Meanwhile, the comparative study of the three OCV-SoC relationships fits by the corresponding OCV tests is discussed in terms of the SoC online estimation under various temperatures. The results show that the adaptive extended Kalman filter (AEKF) algorithm can better improve the accuracy and robustness of SoC estimation than that of the extended Kalman filter (EKF) algorithm. Most importantly, the OCV-SoC relationship obtains from the CIL OCV test method is applied to the AEKF algorithm, which has higher accuracy and better statistical indices of SoC estimation, especially suitable for the low temperature.
  •  
6.
  • Guo, Xuewen, et al. (författare)
  • Understanding the effect of N2200 on performance of J71 : ITIC bulk heterojunction in ternary non-fullerene solar cells
  • 2019
  • Ingår i: Organic electronics. - : Elsevier. - 1566-1199 .- 1878-5530. ; 71, s. 65-71
  • Tidskriftsartikel (refereegranskat)abstract
    • None-fullerene solar cells with ternary architecture have attracted much attention because it is an effective approach for boosting the device power conversion efficiency. Here, the crystalline polymer N2200 as the third component is integrated into J71: ITIC bulk heterojunction. A series of characterizations indicate that N2200 could increase photo-harvesting, balanced hole and electron mobilities, enhanced exciton dissociation, and suppressed charge recombination, which result in the comprehensive improvement of open circuit voltage, short circuit current and fill factor in the device. Moreover, after introduction of N2200, the morphology of the ternary active layer is optimized, and the film crystallinity is improved. This work demonstrates that adding a small quantity of high crystallization acceptor into non-fullerene donor: acceptor mixture is a promising strategy toward developing high-performance organic solar cells.
  •  
7.
  • Jenniskens, Peter, et al. (författare)
  • The Creston, California, meteorite fall and the origin of L chondrites
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:4, s. 699-720
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.
  •  
8.
  • Kang, Yuqiong, et al. (författare)
  • Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries
  • 2021
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 62, s. 538-545
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to their high theoretical specific capacity and low cost, lithium- and manganese-rich layered oxide (LMR) cathode materials are receiving increasing attention for application in lithium-ion batteries. However, poor lithium ion and electron transport kinetics plus side effects of anion and cation redox reactions hamper power performance and stability of the LMRs. In this study, LMR Li1.2Mn0.6Ni0.2O2 was modified by phosphorus (P)-doping to increase Li+ conductivity in the bulk material. This was achieved by increasing the interlayer spacing of the lithium layer, electron transport and structural stability, resulting in improvement of the rate and safety performance. P5+ doping increased the distance between the (003) crystal planes from ∼0.474 nm to 0.488 nm and enhanced the structural stability by forming strong covalent bonds with oxygen atoms, resulting in an improved rate performance (capacity retention from 38% to 50% at 0.05 C to 5 C) and thermal stability (50% heat release compared with pristine material). First-principles calculations showed the P-doping makes the transfer of excited electrons from the valence band to conduction band easier and P can form a strong covalent bond helping to stabilize material structure. Furthermore, the solid-state electrolyte modified P5+ doped LMR showed an improved cycle performance for up to 200 cycles with capacity retention of 90.5% and enhanced initial coulombic efficiency from 68.5% (pristine) or 81.7% (P-doped LMR) to 88.7%.
  •  
9.
  • Li, Yuan, et al. (författare)
  • Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles
  • 2021
  • Ingår i: Applied Thermal Engineering. - : Elsevier BV. - 1359-4311 .- 1873-5606. ; 185
  • Tidskriftsartikel (refereegranskat)abstract
    • An appropriate battery thermal management system is essential for electric vehicles to keep an optimal working temperature range with minimal temperature difference, and meanwhile to ensure the battery is more efficient and safe. In this paper, the liquid cold plate thermal management system with heat pipes is proposed to investigate the thermal characteristic of LiFePO4 battery pack during various discharge rate operations. A three-dimensional numerical model based on standard k-epsilon turbulent model is developed to realize the visible analysis of fluid flow and heat transfer for the proposed thermal management system. The 50 Ah battery module is used in the experiment to validate the cooling effects of proposed thermal management system relied on heat pipes, and its performance is compared with liquid cold plate without heat pipes. Furthermore, the cooling performance of the cold plate with heat pipes could be further improved through the orthogonal experiment design, the maximum temperature of battery cell and temperature difference of battery module could be dropped by 6.95% and 11.08%, as compared with the original design. What's more, the channel height of cold plate with heat pipes has the greatest effect on the maximum temperature of battery cells and temperature difference of battery modules.
  •  
10.
  • You, Xiaohu, et al. (författare)
  • Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts
  • 2021
  • Ingår i: Science China Information Sciences. - : Science Press. - 1674-733X .- 1869-1919. ; 64:1
  • Forskningsöversikt (refereegranskat)abstract
    • The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 224
Typ av publikation
tidskriftsartikel (169)
konferensbidrag (44)
forskningsöversikt (7)
rapport (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (205)
övrigt vetenskapligt/konstnärligt (19)
Författare/redaktör
Guo, Li (37)
Guo, Sheng, 1981 (16)
Persson, Nils-Kriste ... (13)
Li, Hailong, 1976- (12)
Berglin, Lena (10)
Li, Y. (8)
visa fler...
Zhang, H. (6)
Guo, Y (6)
Guo, J. (5)
Seetharaman, Seshadr ... (5)
Sandsjö, Leif, 1958 (5)
Zhang, Li (5)
Backe, Carin (5)
Sandsjö, Leif (5)
Li, J. (4)
Wang, Z. (4)
Svensson, Tommy, 197 ... (4)
Sundén, Bengt (4)
Sun, Q. (4)
Li, Wei (4)
Zhao, J (4)
Jager, Edwin, 1973- (4)
Yan, Jinyue (4)
Ma, Z (4)
Andersson, Martin (3)
Li, X. (3)
Liu, Z. (3)
Wang, Y. (3)
Sun, Jie, 1977 (3)
Teng, Lidong (3)
Chen, Z. (3)
Wang, W. (3)
Yuan, Y. (3)
Stoica, Peter (3)
Guo, L. (3)
Li, Yuan (3)
Sun, Licheng, 1962- (3)
Zhang, M (3)
Xie, J (3)
Li, Jian (3)
Chen, Yun, 1978 (3)
Wang, Ergang, 1981 (3)
Guo, Fei (3)
Martinez, Jose Gabri ... (3)
Lu, Zhonghai (3)
Umeki, Kentaro (3)
Gebart, Rikard (3)
Thordstein, Magnus (3)
Guo, Min (3)
Yan, Jinyue, 1959- (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (70)
Chalmers tekniska högskola (48)
Högskolan i Borås (30)
Luleå tekniska universitet (26)
Mälardalens universitet (19)
Lunds universitet (15)
visa fler...
Linköpings universitet (13)
Stockholms universitet (7)
Uppsala universitet (5)
RISE (3)
Karolinska Institutet (3)
Umeå universitet (2)
Göteborgs universitet (1)
Högskolan i Halmstad (1)
Malmö universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (221)
Kinesiska (2)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Medicin och hälsovetenskap (6)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy