SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liang Bao) ;hsvcat:1"

Sökning: WFRF:(Liang Bao) > Naturvetenskap

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • Qian, Yan, et al. (författare)
  • Quantification for total demethylation potential of environmental samples utilizing the EGFP reporter gene
  • 2016
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 306, s. 278-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The demethylation potential of pollutants is arguably an innate component of their toxicity in environmental samples. A method was developed for determining the total demethylation potential of food samples (TDQ). The demethylation epigenetic toxicity was determined using the Hep G2 cell line transfected with pEGFP-C3 plasmids containing a methylated promoter of the EGFP reporter gene. The total demethylation potential of the sample extracts (the 5-AZA-CdR demethylation toxic equivalency) can be quantified within one week by using a standard curve of the 5-AZA-CdR demethylation agent. To explore the applicability of TDQ for environmental samples, 17 groundwater samples were collected from heavy polluted Kuihe river and the total demethylation potentials of the sample extracts were measured successfully. Meaningful demethylation toxic equivalencies ranging from 0.00050 to 0.01747 μM were found in all groundwater sample extracts. Among 19 kinds of inorganic substance, As and Cd played important roles for individual contribution to the total demethylation epigenetic toxicity. The TDQ assay is reliable and fast for quantifying the DNA demethylation potential of environmental sample extracts, which may improve epigenetic toxicity evaluations for human risk assessment, and the consistent consuming of groundwater alongside the Kuihe river pose unexpected epigenetic health risk to the local residents.
  •  
4.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
5.
  • Yang, Bao, et al. (författare)
  • Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - Washington : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Asian summer monsoon (ASM) variability and its long-term ecological and societal impacts extending back to Neolithic times are poorly understood due to a lack of high-resolution climate proxy data. Here, we present a precisely dated and well-calibrated treering stable isotope chronology from the Tibetan Plateau with 1- to 5-y resolution that reflects high- to low-frequency ASM variability from 4680 BCE to 2011 CE. Superimposed on a persistent drying trend since the mid-Holocene, a rapid decrease in moisture availability between similar to 2000 and similar to 1500 BCE caused a dry hydroclimatic regime from similar to 1675 to similar to 1185 BCE, with mean precipitation estimated at 42 +/- 4% and 5 +/- 2% lower than during themid-Holocene and the instrumental period, respectively. This second-millennium-BCE megadrought marks the mid-to late Holocene transition, during which regional forests declined and enhanced aeolian activity affected northern Chinese ecosystems. We argue that this abrupt aridification starting similar to 2000 BCE contributed to the shift of Neolithic cultures in northern China and likely triggered human migration and societal transformation.
  •  
6.
  • Fan, Mei-Cen, et al. (författare)
  • Room-temperature extraction of individual elements from charged spent LiFePO4 batteries
  • 2022
  • Ingår i: Rare Metals. - : Springer. - 1001-0521 .- 1867-7185.
  • Tidskriftsartikel (refereegranskat)abstract
    • Recycling millions of metric tons of spent LiFePO4 batteries would benefit human health while reducing resource depletion and environmental pollution. However, recovering individual elements from the spent batteries without generating waste is challenging. Here, we present a distinctive approach for recycling spent LiFePO4 batteries at room temperature, where water is the only leaching agent consumed. FePO4 and lithium intercalated graphite act as a precursor material for selectively extracting lithium, iron, and phosphorus through charging the LiFePO4 batteries to the delithiated state. NaOH solution extracted Fe from FePO4 within 30 min and regenerated without consumption, similar to a catalyst. Under the optimal leaching conditions (1 mol·L−1 NaOH, 0.5 h, NaOH/Fe molar ratio of 4.5), Fe and P leaching efficiencies achieved 89.1% and 99.2%, respectively. The methodology reflected in this research reduced the material cost per kg cathode material to a fraction of previously published reports, only occupies 6.13% of previous reports. In addition, the method improved the battery recycling revenue calculated by the EverBatt model by 2.31 times and 1.94 times over pyrometallurgical and hydrometallurgical methods. The proposed method allows for the convenient recovery of the elemental components of spent LiFePO4 batteries.
  •  
7.
  • Han, Xin-Bao, et al. (författare)
  • Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 141:1, s. 232-239
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxygen evolution reaction is a crucial step in water electrolysis to develop clean and renewable energy. Although noble metal-based catalysts have demonstrated high activity for the oxygen evolution reaction, their application is limited by their high cost and low availability. Here we report the use of a molecule-to-cluster strategy for preparing ultrasmall trimetallic clusters by using the polyoxometalate molecule as a precursor. Ultrafine (0.8 nm) transition-metal clusters with controllable chemical composition are obtained. The transition-metal clusters enable highly efficient oxygen evolution through water electrolysis in alkaline media, manifested by an overpotential of 192 mV at 10 mA cm–2, a low Tafel slope of 36 mV dec–1, and long-term stability for 30 h of electrolysis. We note, however, that besides the excellent performance as an oxygen evolution catalyst, our molecule-to-cluster strategy provides a means to achieve well-defined transition-metal clusters in the subnanometer regime, which potentially can have an impact on several other applications.
  •  
8.
  • Bao, Zijia, et al. (författare)
  • A helical polypyrrole nanotube interwoven zeolitic imidazolate framework and its derivative as an oxygen electrocatalyst
  • 2022
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; 58:80, s. 11288-11291
  • Tidskriftsartikel (refereegranskat)abstract
    • A helical polypyrrole nanotube interwoven zeolitic imidazolate framework (ZIF) has been prepared for the first time. After pyrolysis, the helical carbon could act as highly active sites, while the 3D-connected nanoarchitecture contributed to fast charge transfer. The derived carbon material exhibits high activity for the ORR and good performance for a Zn–air battery.
  •  
9.
  •  
10.
  • Zhang, Daode, et al. (författare)
  • Compact hierarchical IBE from lattices in the standard model
  • 2018
  • Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Cham : Springer International Publishing. - 1611-3349 .- 0302-9743. ; 10631, s. 210-221
  • Konferensbidrag (refereegranskat)abstract
    • At Crypto’10, Agrawal et al. proposed a lattice-based selectively secure Hierarchical Identity-based Encryption (HIBE) scheme (ABB10b) with small ciphertext on the condition that λ (the length of identity at each level) is small in the standard model. In this paper, we present another lattice-based selectively secure HIBE scheme with depth d, using a gadget matrix G′∈Z q n×n⌈logbq⌉ with enough large b= 2 d to replace the matrix B∈Z q n×m in the HIBE scheme proposed by Agrawal et al. at Eurocrypt’10. In our HIBE scheme, not only the size of ciphertext at level ℓ is (Formula Presented) larger than the size in ABB10b and at least O(ℓ) smaller than the sizes in the previous HIBE schemes except ABB10b, but also the size of the master public key is at least O(d) times smaller than the previous schemes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy