SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Licheri Valentina) "

Sökning: WFRF:(Licheri Valentina)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adermark, Louise, 1974, et al. (författare)
  • Astrocytes modulate extracellular neurotransmitter levels and excitatory neurotransmission in dorsolateral striatum via dopamine D2 receptor signaling
  • 2022
  • Ingår i: Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 0893-133X .- 1740-634X. ; 47:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrocytes provide structural and metabolic support of neuronal tissue, but may also be involved in shaping synaptic output. To further define the role of striatal astrocytes in modulating neurotransmission we performed in vivo microdialysis and ex vivo slice electrophysiology combined with metabolic, chemogenetic, and pharmacological approaches. Microdialysis recordings revealed that intrastriatal perfusion of the metabolic uncoupler fluorocitrate (FC) produced a robust increase in extracellular glutamate levels, with a parallel and progressive decline in glutamine. In addition, FC significantly increased the microdialysate concentrations of dopamine and taurine, but did not modulate the extracellular levels of glycine or serine. Despite the increase in glutamate levels, ex vivo electrophysiology demonstrated a reduced excitability of striatal neurons in response to FC. The decrease in evoked potentials was accompanied by an increased paired pulse ratio, and a reduced frequency of spontaneous excitatory postsynaptic currents, suggesting that FC depresses striatal output by reducing the probability of transmitter release. The effect by FC was mimicked by chemogenetic inhibition of astrocytes using G(i)-coupled designer receptors exclusively activated by designer drugs (DREADDs) targeting GFAP, and by the glial glutamate transporter inhibitor TFB-TBOA. Both FC- and TFB-TBOA-mediated synaptic depression were inhibited in brain slices pre-treated with the dopamine D2 receptor antagonist sulpiride, but insensitive to agents acting on presynaptic glutamatergic autoreceptors, NMDA receptors, gap junction coupling, cannabinoid 1 receptors, mu-opioid receptors, P2 receptors or GABA(A) receptors. In conclusion, our data collectively support a role for astrocytes in modulating striatal neurotransmission and suggest that reduced transmission after astrocytic inhibition involves dopamine.
  •  
2.
  • Adermark, Louise, 1974, et al. (författare)
  • Weight gain and neuroadaptations elicited by high fat diet depend on fatty acid composition.
  • 2021
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 1873-3360 .- 0306-4530. ; 126
  • Tidskriftsartikel (refereegranskat)abstract
    • Overconsumption of food is a major health concern in the western world. Palatable food has been shown to alter the activity of neural circuits, and obesity has been linked to alterations in the connectivity between the hypothalamus and cortical regions involved in decision-making and reward processing, putatively modulating the incentive value of food. Outlining neurophysiological adaptations induced by dietary intake of high fat diets (HFD) is thus valuable to establish how the diet by itself may promote overeating. To this end, C57BL/6 mice were fed HFD rich in either saturated fatty acids (HFD-S) or polyunsaturated fatty acids (HFD-P), or a low-fat control diet (LFD) for four weeks. Food and energy intake were monitored and ex vivo electrophysiology was employed to assess neuroadaptations in lateral hypothalamus (LH) and corticostriatal circuits, previously associated with food intake. In addition, the effects of dietary saturated and polyunsaturated fatty acids on the gene expression of NMDA, AMPA and GABAA receptor subunits in the hypothalamus were investigated. Our data shows that mice fed HFD-P had increased daily food and energy intake compared with mice fed HFD-S or LFD. However, this increase in energy intake had no obesogenic effects. Electrophysiological recordings demonstrated that HFD-P had a selective effect on glutamatergic neurotransmission in the LH, which was concomitant with a change in mRNA expression of AMPA receptor subtypes Gria1, Gria3 and Gria4, with no effect on the mRNA expression of NMDA receptor subtypes or GABAA receptor subtypes. Furthermore, while synaptic output from corticostriatal subregions was not significantly modulated by diet, synaptic plasticity in the form of long-term depression (LTD) was impaired in the dorsomedial striatum of mice fed HFD-S. In conclusion, this study suggests that the composition of fatty acids in the diet not only affects weight gain, but may also modulate neuronal function and plasticity in brain regions involved in food intake.
  •  
3.
  • Barbier, Estelle, et al. (författare)
  • A molecular mechanism for choosing alcohol over an alternative reward
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 360:6395, s. 1321-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol addiction leads to increased choice of alcohol over healthy rewards. We established an exclusive choice procedure in which similar to 15% of outbred rats chose alcohol over a high-value reward. These animals displayed addiction-like traits, including high motivation to obtain alcohol and pursuit of this drug despite adverse consequences. Expression of the g-aminobutyric acid (GABA) transporter GAT-3 was selectively decreased within the amygdala of alcohol-choosing rats, whereas a knockdown of this transcript reversed choice preference of rats that originally chose a sweet solution over alcohol. GAT-3 expression was selectively decreased in the central amygdala of alcohol-dependent people compared to those who died of unrelated causes. Impaired GABA clearance within the amygdala contributes to alcohol addiction, appears to translate between species, and may offer targets for new pharmacotherapies for treating this disorder.
  •  
4.
  • Licheri, Valentina, et al. (författare)
  • Complex Control of Striatal Neurotransmission by Nicotinic Acetylcholine Receptors via Excitatory Inputs onto Medium Spiny Neurons
  • 2018
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 38:29, s. 6597-6607
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of nicotine dependence is higher than that for any other substance abuse disorder; still, the underlying mechanisms are not fully established. To this end, we studied acute effects by nicotine on neurotransmission in the dorsolateral striatum, a key brain region with respect to the formation of habits. Electrophysiological recordings in acutely isolated brain slices from rodent showed that nicotine (10 nM to 10 mu M) produced an LTD of evoked field potentials. Current-clamp recordings revealed no significant effect by nicotine on membrane voltage or action potential frequency, indicating that the effect by nicotine is primarily synaptic. Nicotine did not modulate sIPSCs, or the connectivity between fast-spiking interneurons and medium spiny neurons, as assessed by whole-cell recordings combined with optogenetics. However, the frequency of sEPSCs was significantly depressed by nicotine. The effect by nicotine was mimicked by agonists targeting alpha 7-or alpha 4-containing nAChRs and blocked in slices pretreated with a mixture of antagonists targeting these receptor subtypes. Nicotine-induced LTD was furthermore inhibited by dopamine D2 receptor antagonist and occluded by D2 receptor agonist. In addition, modulation of cholinergic neurotransmission suppressed the responding to nicotine, which might reflect upon the postulated role for nAChRs as a presynaptic filter to differentially govern dopamine release depending on neuronal activity. Nicotine-induced suppression of excitatory inputs onto medium spiny neurons may promote nicotine-induced locomotor stimulation and putatively initiate neuroadaptations that could contribute to the transition toward compulsive drug taking.
  •  
5.
  • Licheri, Valentina, et al. (författare)
  • Nicotine-induced neuroplasticity in striatum is subregion-specific and reversed by motor training on the rotarod.
  • 2020
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 25:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Nicotine is recognized as one of the most addictive drugs, which in part could be attributed to progressive neuroadaptations and rewiring of dorsal striatal circuits. Since motor-skill learning produces neuroplasticity in the same circuits, we postulate that rotarod training could be sufficient to block nicotine-induced rewiring and thereby prevent long-lasting impairments of neuronal functioning. To test this hypothesis, Wistar rats were subjected to 15 days of treatment with either nicotine (0.36 mg/kg) or vehicle. After treatment, a subset of animals was trained on the rotarod. Ex vivo electrophysiology was performed 1 week after the nicotine treatment period and after up to 3 months of withdrawal to define neurophysiological transformations in circuits of the striatum and amygdala. Our data demonstrate that nicotine alters striatal neurotransmission in a distinct temporal and spatial sequence, where acute transformations are initiated in dorsomedial striatum (DMS) and nucleus accumbens (nAc) core. Following 3 months of withdrawal, synaptic plasticity in the form of endocannabinoid-mediated long-term depression (eCB-LTD) is impaired in the dorsolateral striatum (DLS), and neurotransmission is altered in DLS, nAc shell, and the central nucleus of the amygdala (CeA). Training on the rotarod, performed after nicotine treatment, blocks neurophysiological transformations in striatal subregions, and prevents nicotine-induced impairment of eCB-LTD. These datasets suggest that nicotine-induced rewiring of striatal circuits can be extinguished by other behaviors that induce neuroplasticity. It remains to be determined if motor-skill training could be used to prevent escalating patterns of drug use in experienced users or facilitate the recovery from addiction.
  •  
6.
  • Lotfi, Amir, et al. (författare)
  • Sustained inhibitory transmission but dysfunctional dopamine D2 receptor signaling in dorsal striatal subregions following protracted abstinence from amphetamine
  • 2022
  • Ingår i: Pharmacology Biochemistry and Behavior. - : Elsevier BV. - 0091-3057. ; 218
  • Tidskriftsartikel (refereegranskat)abstract
    • Behavioral sensitization to amphetamine is a complex phenomenon that engages several neurotransmitter systems and brain regions. While dysregulated signaling in the mesolimbic dopamine system repeatedly has been linked to behavioral sensitization, later research has implicated dorsal striatal circuits and GABAergic neurotransmission in contributing to behavioral transformation elicited by amphetamine. The aim of this study was thus to determine if repeated amphetamine exposure followed by abstinence would alter inhibitory neurotransmission in dorsal striatal subregions. To this end, male Wistar rats received amphetamine (2.0 mg/kg) in an intermittent manner for a total of five days. Behavioral sensitization to amphetamine was measured in locomotor-activity boxes, while neuroadaptations were recorded in the dorsolateral (DLS) and dorsomedial striatum (DMS) using ex vivo electrophysiology at different timepoints of amphetamine abstinence (2 weeks, 4-5 weeks, 10-11 weeks). Data show that repeated drug-exposure produces behavioral sensitization to the locomotor-stimulatory properties of amphetamine, which sustains for at least ten weeks. Electrophysiological recordings demonstrated a long-lasting suppression of evoked population spikes in both striatal subregions. Furthermore, following ten weeks of abstinence, the responsiveness to a dopamine D2 receptor agonist was significantly impaired in brain slices from rats previously receiving amphetamine. However, neither the frequency nor the amplitude of spontaneous inhibitory currents was affected by treatment at any of the time points analyzed. In conclusion, passive administration of amphetamine initiates long-lasting neuroadaptations in brain regions associated with goal-directed behavior and habitual performance, but these transformations do not appear to be driven by changes in GABAergic neurotransmission.
  •  
7.
  • Vestlund, Jesper, et al. (författare)
  • Activation of glucagon-like peptide-1 receptors and skilled reach foraging
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon-like peptide-1 receptor (GLP-1R) agonists, such as exendin-4 (Ex4), liraglutide and dulaglutide, regulate glucose homeostasis and are thus used to treat diabetes type II. GLP-1 also contributes towards a variety of additional physiological functions, including suppression of reward and improvement of learning. Acute activation of GLP-1R in the nucleus accumbens (NAc) shell, an area essential for motivation, reduces the motivation to consume sucrose or alcohol when assessed in a simple motor task. However, the effects of repeated administration of the different GLP-1R agonists on behaviours in a more complex motor task are unknown. The aim was therefore to investigate the effects of repeated Ex4, liraglutide or dulaglutide on the motivation and learning of a complex motor tasks such as skilled reach foraging in the Montoya staircase test. To explore the neurophysiological correlates of the different GLP-1R agonists on motivation,ex vivoelectrophysiological recordings were conducted. In rats with an acquired skilled reach performance, Ex4 or liraglutide but not dulaglutide reduced the motivation of skilled reach foraging. In trained rats, Ex4 infusion into NAc shell decreased this motivated behaviour, and both Ex4 and liraglutide supressed the evoked field potentials in NAc shell. In rats without prior Montoya experience, dulaglutide but not Ex4 or liraglutide enhanced the learning of skilled reach foraging. Taken together, these findings indicate that the tested GLP-1R agonists have different behavioural outcomes depending on the context.
  •  
8.
  • Vestlund, Jesper, et al. (författare)
  • Ghrelin signalling within the rat nucleus accumbens and skilled reach foraging
  • 2019
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530. ; 106, s. 183-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation alters behaviour in a complex manner and nucleus accumbens (NAc) shell has been implied as a key structure regulating such behaviour. Recent studies show that acute ghrelin signalling enhances motivation when assessed in a simple motor task. The aim of the present study was to define the role of ghrelin signalling on motivation in a more complex motor behaviour. Rats were tested in the Montoya staircase, an animal model of skilled reach foraging assessed by the number of sucrose pellets consumed. Electrophysiological recordings were conducted to explore the neurophysiological correlates of ghrelin signalling. The initial electrophysiological results displayed that ex vivo administration of ghrelin increased NAc shell output in brain slices from drug- and training-naïve rats. In rats with an acquired skilled reach performance, acute as well as repeated treatment with a ghrelin receptor (GHSR-1 A) antagonist (JMV2959) decreased the number of sucrose pellets consumed. Moreover, infusion of JMV2959 into NAc shell reduced this consumption. Sub-chronic, during ten days, JMV2959 treatment during training on the Montoya staircase reduced the number of pellets consumed, whereas ghrelin improved this behaviour. In addition, field potential and whole cell recordings were conducted in NAc shell of rats that had been treated with ghrelin or GHSR-1 A antagonist during training on the Montoya staircase. Sub-chronic administration of ghrelin during motor-skill learning selectively increased the frequency of inhibitory transmission in the NAc shell, resulting in a net suppression of accumbal output. Collectively these data suggest that ghrelin signalling in NAc shell enhances skilled reached foraging tentatively by increasing the motivation. © 2019
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy