SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindahl Niklas 1981) ;pers:(Johansson Patrik 1969)"

Sökning: WFRF:(Lindahl Niklas 1981) > Johansson Patrik 1969

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bitenc, Jan, et al. (författare)
  • Concept and electrochemical mechanism of an Al metal anode - organic cathode battery
  • 2020
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297 .- 2405-8289. ; 24, s. 379-383
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum (Al) batteries are fundamentally a promising future post-Li battery technology. The recently demonstrated concept of an Al-graphite battery represents some significant progress for the technology, but the cell energy density is still very modest and limited by the quantity of the AlCl3 based electrolyte, as it relies on AlCl4- intercalation. For further progress, cathode materials capable of an electrochemical reaction with Al positively charged species are needed. Here such a concept of an Al metal anode - organic cathode battery based on anthraquinone (AQ) electrochemistry with a discharge voltage of 1.1 V is demonstrated. Further improvement of both the cell capacity retention and rate capability is achieved by nano-structured and polymerized cathodes. The intricate electrochemical mechanism is proven to be that the anthraquinone groups undergo reduction of their carbonyl bonds during discharge and become coordinated by AlCl2+ species. Altogether the Al metal anode - AQ cathode cell has almost the double energy density of the state-of-the-art Al-graphite battery.
  •  
2.
  • Jankowski, Piotr, 1990, et al. (författare)
  • Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:45, s. 22609-22618
  • Tidskriftsartikel (refereegranskat)abstract
    • The solid electrolyte interphase (SEI) layer is a key element of lithium-ion batteries (LIBs) enabling stable operation and significantly affecting the cycling performance including life-length. Here we present the concept of chemically soft SEI-forming additives, created by introducing aromatic ring based derivatives of already well-known SEI-formers to render them chemically soft, resulting in 1,3,2-benzodioxathiole 2,2-dioxide (DTDPh), 3H-1,2-benzoxathiole 2,2-dioxide (PSPh), and 1,4,2-benzodioxathiine 2,2-dioxide (PSOPh). A computational DFT based comparison predicts promise with respect to both early and controlled reduction processes. These predictions are verified by basic electrochemical studies targeting appropriate additive reduction potentials i.e. prior to any electrolyte solvent or salt decomposition. In addition, the decomposition paths of the SEI-formers are projected and the end products compared with spectroscopic data for the SEI-layers formed in LIB cells. The SEI-layers formed finally show very good properties in terms of improved capacity retention, improved coulombic efficiency, and reduced resistance for the graphite/electrolyte/LFP full cells made, especially observed for PSOPh. That is due to the preferred C-O bond breaking mechanism, observed also for DTDPh, and supported by the S-C bond breaking mechanism, together resulting in well conductive and good adhesion properties of the SEI-layers. This is expedited by higher softness, eventuating in a formation process stabilizing some of the radicals and/or lowering the kinetic barriers. These positive effects are confirmed both when applying a commercial style electrolyte and for a new generation electrolyte based on the LiTDI salt, where suppression of the TDI anion reduction is truly crucial.
  •  
3.
  • Jankowski, Piotr, 1990, et al. (författare)
  • Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1, s. 2582-2591
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrolyte additives are pivotal for stabilization of lithium-ion batteries, by suppressing capacity loss through creation of an engineered solid-electrolyte-interphase-layer (SEI-layer) at the negative electrode and thereby increasing lifetime. Here, we compare four different sulfur-containing 5-membered-ring molecules as SEI-formers: 1,3,2-dioxathiolane-2,2-dioxide (DTD), propane-1,3-sultone (PS), sulfopropionic acid anhydride (SPA), and prop-1-ene-1,3-sultone (PES). Density functional theory calculations and electrochemical measurements both confirm appropriate reduction potentials. For a connection of the protective properties of the SEIs formed to the chemical structure of the additives, the decomposition paths are computed and compared with spectroscopic data for the negative electrode surface. The performance of full-cells cycled using a commercial electrolyte and the different additives reveals the formation of organic dianions to play a crucial beneficial role, more so for DTD and SPA than for PS and PES.
  •  
4.
  • Lindahl, Niklas, 1981, et al. (författare)
  • Aluminum Metal-Organic Batteries with Integrated 3D Thin Film Anodes
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 30:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum 3D thin film anodes fully integrated with a separator are fabricated by sputtering and enable rechargeable aluminum metal batteries with high power performance. The 3D thin film anodes have an approximately four to eight times larger active surface area than a metal foil, which significantly both reduces the electrochemical overpotential, and improves materials utilization. In full cells with organic cathodes, that is, aluminum metal-organic batteries, the 3D thin film anodes provide 165 mAh g(-1)at 0.5 C rate, with a capacity retention of 81% at 20 C, and 86% after 500 cycles. Post-mortem analysis reveals structural degradation to limit the long-term stability at high rates. As the multivalent charge carrier active here is AlCl2+, the realistic maximal specific energy, and power densities at cell level are approximate to 100 Wh kg(-1)and approximate to 3100 W kg(-1), respectively, which is significantly higher than the state-of-the-art for Al batteries.
  •  
5.
  • Lindahl, Niklas, 1981, et al. (författare)
  • Early stage techno-economic and environmental analysis of aluminium batteries
  • 2023
  • Ingår i: Energy Advances. - : Royal Society of Chemistry (RSC). - 2753-1457. ; 2:3, s. 420-429
  • Tidskriftsartikel (refereegranskat)abstract
    • For any proper evaluation of next generation energy storage systems technological, economic, and environmental performance metrics should be considered. Here conceptual cells and systems are designed for different aluminium battery (AlB) concepts, including both active and passive materials. Despite the fact that all AlBs use high-capacity metal anodes and materials with low cost and environmental impact, their energy densities differ vastly and only a few concepts become competitive taking all aspects into account. Notably, AlBs with high-performance inorganic cathodes have the potential to exhibit superior technological and environmental performance, should they be more reversible and energy efficient, while at the system level costs become comparable or slightly higher than for both AlBs with organic cathodes and lithium-ion batteries (LIBs). Overall, with continued development, AlBs should be able to complement LIBs, especially in light of their significantly lower demand for scarce materials. Several aluminium battery concepts are evaluated at material, cell and system levels for technical, economic and environmental performance, which enables them to complement lithium-ion batteries in the future.
  •  
6.
  • Loaiza, L. C., et al. (författare)
  • Initial Evolution of Passivation Layers in Non-Aqueous Aluminium Batteries
  • 2023
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 170:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminium batteries (AlBs) have gathered considerable attention, primarily due to the high capacity, the low cost, the large abundance in the Earth's crust, and the recyclability of the Al metal anode. However, several hurdles must be surpassed to make AlBs a feasible energy storage technology and two of them are interconnected; the presence of an ionic and electronically insulating native oxide layer on the Al metal anode that calls for special non-aqueous, most often ionic liquid based acidic electrolytes, to enable reversible plating and stripping of Al. We here find the passivation layer initially formed in contact with an ionic liquid electrolyte (ILE) to have a porous and very complex nature, i.e. an outer inorganic/organic layer and an inner oxide-rich layer. Furthermore, it grows under open circuit voltage conditions by simultaneous dissolution and re-deposition of dissolved products, while during galvanostatic cycling this is exacerbated by an electrochemical etching that causes pitting corrosion of the Al metal itself. All of this leads to unstable interfaces being formed and the co-existence of several species at the Al metal anode surface, of which a proper understanding and mitigation are crucial to make AlBs a reality.
  •  
7.
  • Maffre, Marion, et al. (författare)
  • Investigation of Electrochemical and Chemical Processes Occurring at Positive Potentials in "Water-in-Salt" Electrolytes
  • 2021
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 1945-7111 .- 0013-4651. ; 168:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) based water-in-salt electrolytes (WiSEs) has recently emerged as a new promising class of electrolytes, primarily owing to their wide electrochemical stability windows (similar to 3-4 V), that by far exceed the thermodynamic stability window of water (1.23 V). Upon increasing the salt concentration towards superconcentration the onset of the oxygen evolution reaction (OER) shifts more significantly than the hydrogen evolution reaction (HER) does. The OER shift has been explained by the accumulation of hydrophobic anions blocking water access to the electrode surface, hence by double layer theory. Here we demonstrate that the processes during oxidation are much more complex, involving OER, carbon and salt decomposition by OER intermediates, and salt precipitation upon local oversaturation. The positive shift in the onset potential of oxidation currents was elucidated by combining several advanced analysis techniques: rotating ring-disk electrode voltammetry, online electrochemical mass spectrometry, and X-ray photoelectron spectroscopy, using both dilute and superconcentrated electrolytes. The results demonstrate the importance of reactive OER intermediates and surface films for electrolyte and electrode stability and motivate further studies of the nature of the electrode.
  •  
8.
  • Ponrouch, A., et al. (författare)
  • Multivalent rechargeable batteries
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297 .- 2405-8289. ; 20, s. 253-262
  • Forskningsöversikt (refereegranskat)abstract
    • Rechargeable battery technologies based on the use of metal anodes coupled to multivalent charge carrier ions (such as Mg 2+ , Ca 2+ or Al 3+ ) have the potential to deliver breakthroughs in energy density radically leap-frogging the current state-of-the-art Li-ion battery technology. However, both the use of metal anodes and the migration of multivalent ions, within the electrolyte and the electrodes, are technological bottlenecks which make these technologies, all at different degrees of maturity, not yet ready for practical applications. Moreover, the know-how gained during the many years of development of the Li-ion battery is not always transferable. This perspective paper reviews the current status of these multivalent battery technologies, describing issues and discussing possible routes to overcome them. Finally, a brief section about future perspectives is given.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy