SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindblad Toh Kerstin) ;pers:(Zody Michael C)"

Sökning: WFRF:(Lindblad Toh Kerstin) > Zody Michael C

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berglund, Jonas, et al. (författare)
  • Novel origins of copy number variation in the dog genome
  • 2012
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 13:8, s. R73-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. RESULTS: We use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. CONCLUSIONS: A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.
  •  
2.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
3.
  • Church, Deanna M, et al. (författare)
  • Lineage-specific biology revealed by a finished genome assembly of the mouse
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 7:5, s. e1000112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.
  •  
4.
  • Grabherr, Manfred G., et al. (författare)
  • Exploiting Nucleotide Composition to Engineer Promoters
  • 2011
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 6:5, s. e20136-
  • Tidskriftsartikel (refereegranskat)abstract
    • The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue-and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a "proof-of-concept" for custom-designing promoters that are suitable for biotechnological and medical applications.
  •  
5.
  • Jaffe, David B., et al. (författare)
  • Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2
  • 2003
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 13:1, s. 91-96
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rejoined using several criteria, yielding a 64-fold increase in length (N50), and apparent elimination of all global misjoins; (2) gaps between contigs in supercontigs were filled (partially or completely) by insertion of reads, as suggested by pairing within the supercontig, increasing the N50 contig length by 50%; (3) memory usage was reduced fourfold. The outcome of this mouse assembly and its analysis are described in (Mouse Genome Sequencing Consortium 2002).
  •  
6.
  •  
7.
  • Jones, Felicity C., et al. (författare)
  • The genomic basis of adaptive evolution in threespine sticklebacks
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 484:7392, s. 55-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.
  •  
8.
  • Karlsson, Elinor K., et al. (författare)
  • Efficient mapping of mendelian traits in dogs through genome-wide association
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:11, s. 1321-1328
  • Tidskriftsartikel (refereegranskat)abstract
    • With several hundred genetic diseases and an advantageous genome structure, dogs are ideal for mapping genes that cause disease. Here we report the development of a genotyping array with |[sim]|27,000 SNPs and show that genome-wide association mapping of mendelian traits in dog breeds can be achieved with only |[sim]|20 dogs. Specifically, we map two traits with mendelian inheritance: the major white spotting (S) locus and the hair ridge in Rhodesian ridgebacks. For both traits, we map the loci to discrete regions of <1 Mb. Fine-mapping of the S locus in two breeds refines the localization to a region of |[sim]|100 kb contained within the pigmentation-related gene MITF. Complete sequencing of the white and solid haplotypes identifies candidate regulatory mutations in the melanocyte-specific promoter of MITF. Our results show that genome-wide association mapping within dog breeds, followed by fine-mapping across multiple breeds, will be highly efficient and generally applicable to trait mapping, providing insights into canine and human health.
  •  
9.
  • Kirby, Andrew, et al. (författare)
  • Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:3, s. 299-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (similar to 1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.
  •  
10.
  • Lindblad-Toh, Kerstin, et al. (författare)
  • A high-resolution map of human evolutionary constraint using 29 mammals
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 478:7370, s. 476-482
  • Tidskriftsartikel (refereegranskat)abstract
    • The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering similar to 4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for similar to 60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate-and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lindblad-Toh, Kersti ... (14)
Lander, Eric S. (8)
Mauceli, Evan (7)
Jaffe, David B. (5)
Gnerre, Sante (4)
visa fler...
Kellis, Manolis (3)
Andersson, Leif (3)
Di Palma, Federica (3)
Ponting, Chris P. (3)
Sharpe, Ted (3)
Wade, Claire M. (3)
Birney, Ewan (3)
Andersson, Göran (2)
Flicek, Paul (2)
Guigo, Roderic (2)
Sigurdsson, Snaevar (2)
Grabherr, Manfred (2)
Searle, Stephen M. J ... (2)
Russell, Pamela (2)
Haussler, David (2)
Heger, Andreas (2)
Lara, Marcia (2)
Swofford, Ross (2)
Breen, Matthew (2)
Webster, Matthew T. (2)
Daly, Mark J. (2)
Mardis, Elaine R (2)
Wilson, Richard K (2)
Karlsson, Elinor K. (2)
Clawson, Hiram (2)
Myers, Richard M. (2)
Biagi, Tara (2)
Muzny, Donna M (2)
Gibbs, Richard A (2)
Graves, Tina (2)
Nusbaum, Chad (2)
Cook, April (2)
Grabherr, Manfred G. (2)
Hitte, Christophe (2)
Kamal, Michael (2)
Kulbokas, Edward J. (2)
Margulies, Elliott H ... (2)
Washietl, Stefan (2)
Pedersen, Jakob S. (2)
Dickson, Mark C. (2)
Green, Eric D. (2)
Siepel, Adam (2)
Massingham, Tim (2)
Kent, W. James (2)
visa färre...
Lärosäte
Uppsala universitet (15)
Sveriges Lantbruksuniversitet (3)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy