SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linder J) "

Sökning: WFRF:(Linder J)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy (Print). - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
3.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
4.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
5.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
6.
  • Sugai, H., et al. (författare)
  • Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
  • 2020
  • Ingår i: Journal of Low Temperature Physics. - 0022-2291 .- 1573-7357. ; 199:3-4, s. 1107-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
  •  
7.
  •  
8.
  • Erlinge, D., et al. (författare)
  • Bivalirudin versus Heparin Monotherapy in Myocardial Infarction
  • 2017
  • Ingår i: New England Journal of Medicine. - : MASSACHUSETTS MEDICAL SOC. - 0028-4793 .- 1533-4406. ; 377:12, s. 1132-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND The comparative efficacy of various anticoagulation strategies has not been clearly established in patients with acute myocardial infarction who are undergoing percutaneous coronary intervention (PCI) according to current practice, which includes the use of radial-artery access for PCI and administration of potent P2Y 12 inhibitors without the planned use of glycoprotein IIb/IIIa inhibitors. METHODS In this multicenter, randomized, registry-based, open-label clinical trial, we enrolled patients with either ST-segment elevation myocardial infarction (STEMI) or non-STEMI (NSTEMI) who were undergoing PCI and receiving treatment with a potent P2Y(12) inhibitor (ticagrelor, prasugrel, or cangrelor) without the planned use of glycoprotein IIb/IIIa inhibitors. The patients were randomly assigned to receive bivalirudin or heparin during PCI, which was performed predominantly with the use of radial-artery access. The primary end point was a composite of death from any cause, myocardial infarction, or major bleeding during 180 days of follow-up. RESULTS A total of 6006 patients (3005 with STEMI and 3001 with NSTEMI) were enrolled in the trial. At 180 days, a primary end-point event had occurred in 12.3% of the patients (369 of 3004) in the bivalirudin group and in 12.8% (383 of 3002) in the heparin group (hazard ratio, 0.96; 95% confidence interval [CI], 0.83 to 1.10; P = 0.54). The results were consistent between patients with STEMI and those with NSTEMI and across other major subgroups. Myocardial infarction occurred in 2.0% of the patients in the bivalirudin group and in 2.4% in the heparin group (hazard ratio, 0.84; 95% CI, 0.60 to 1.19; P = 0.33), major bleeding in 8.6% and 8.6%, respectively (hazard ratio, 1.00; 95% CI, 0.84 to 1.19; P = 0.98), definite stent thrombosis in 0.4% and 0.7%, respectively (hazard ratio, 0.54; 95% CI, 0.27 to 1.10; P = 0.09), and death in 2.9% and 2.8%, respectively (hazard ratio, 1.05; 95% CI, 0.78 to 1.41; P = 0.76). CONCLUSIONS Among patients undergoing PCI for myocardial infarction, the rate of the composite of death from any cause, myocardial infarction, or major bleeding was not lower among those who received bivalirudin than among those who received heparin monotherapy. (Funded by the Swedish Heart-Lung Foundation and others;
  •  
9.
  • Malinovschi, A., et al. (författare)
  • Assessment of Global Lung Function Initiative (GLI) reference equations for diffusing capacity in relation to respiratory burden in the Swedish CArdioPulmonary bioImage Study (SCAPIS)
  • 2020
  • Ingår i: European Respiratory Journal. - Lausanne, Switzerland : EUROPEAN RESPIRATORY SOC JOURNALS LTD. - 0903-1936 .- 1399-3003. ; 56:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Lung Function Initiative (GLI) has recently published international reference values for diffusing capacity of the lung for carbon monoxide (DLCO). Lower limit of normal (LLN), i.e. the 5th percentile, usually defines impaired D-LCO. We examined if the GLI LLN for D-LCO differs from the LLN in a Swedish population of healthy, never-smoking individuals and how any such differences affect identification of subjects with respiratory burden. Spirometry, D-LCO, chest high-resolution computed tomography (HRCT) and questionnaires were obtained from the first 15 040 participants, aged 50-64 years, of the Swedish CArdioPulmonary bioImage Study (SCAPIS). Both GLI reference values and the lambda-mu-sigma (LMS) method were used to define the LLN in asymptomatic never-smokers without respiratory disease (n=4903, of which 2329 were women). Both the median and LLN for D-LCO from SCAPIS were above the median and LLN from the GLI (p<0.05). The prevalence of D-LCO GLI LLN but GLI LLN but GLI LLN and >SCAPIS LLN). No differences were found with regard to physician-diagnosed asthma. The GLI LLN for D-LCO is lower than the estimated LLN in healthy, never-smoking, middle-aged Swedish adults. Individuals with D-LCO above the GLI LLN but below the SCAPIS LLN had, to a larger extent, an increased respiratory burden. This suggests clinical implications for choosing an adequate LLN for studied populations.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (382)
konferensbidrag (61)
forskningsöversikt (8)
rapport (1)
bokkapitel (1)
annan publikation (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (376)
övrigt vetenskapligt (76)
populärvet., debatt m.m. (2)
Författare/redaktör
Linder, S (87)
Linder, J. (81)
Linder, R. (51)
Linder, O (49)
Linder, M (36)
Linder, Stig (34)
visa fler...
Linder, E. (29)
Lundin, J (29)
Wallentin, L (20)
Gullbo, J (20)
Samuelsson, J (19)
Linder, Jan (19)
D'Arcy, P (19)
Grip, L (17)
Lundin, M (17)
Lofvenberg, E (17)
Gullbo, Joachim (17)
Bjorkholm, M (16)
Oldgren, J (16)
Hellstrom-Lindberg, ... (15)
Siegbahn, A (15)
Turesson, I (14)
Nilsson, L (14)
Malm, C. (14)
Hansson, J. (14)
Linder, Olle (14)
Lundin, Johan (13)
Omerovic, E (13)
Perez-Gutthann, S (13)
Larsson, R (12)
Forsgren, Lars (12)
Erlinge, D. (12)
Harms-Ringdahl, K (12)
Grimfors, G (12)
Bernell, P. (12)
Linder, A (12)
Ekholm, J (11)
Frobert, O (11)
Arana, A (11)
Dybedal, I (11)
Shoshan, MC (11)
Linder, LE (11)
James, S. (10)
Larsson, Rolf (10)
Johansson, J (10)
Bergstrom, J (10)
Zhang, Xiaonan (10)
Fryknas, M (10)
Zhang, XN (10)
Astermark, J (10)
visa färre...
Lärosäte
Karolinska Institutet (286)
Uppsala universitet (103)
Linköpings universitet (41)
Lunds universitet (39)
Umeå universitet (34)
Göteborgs universitet (31)
visa fler...
Kungliga Tekniska Högskolan (21)
Stockholms universitet (19)
Örebro universitet (13)
Chalmers tekniska högskola (8)
Högskolan Dalarna (7)
Mittuniversitetet (6)
Linnéuniversitetet (4)
VTI - Statens väg- och transportforskningsinstitut (4)
Högskolan i Borås (2)
Sveriges Lantbruksuniversitet (2)
Luleå tekniska universitet (1)
Gymnastik- och idrottshögskolan (1)
Sophiahemmet Högskola (1)
visa färre...
Språk
Engelska (452)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (146)
Naturvetenskap (42)
Teknik (16)
Lantbruksvetenskap (6)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy