SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ling Charlotte) ;pers:(Nilsson Emma)"

Search: WFRF:(Ling Charlotte) > Nilsson Emma

  • Result 1-10 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brøns, Charlotte, et al. (author)
  • Deoxyribonucleic Acid Methylation and Gene Expression of PPARGC1A in Human Muscle Is Influenced by High-Fat Overfeeding in a Birth-Weight-Dependent Manner.
  • 2010
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95, s. 3048-3056
  • Journal article (peer-reviewed)abstract
    • Context: Low birth weight (LBW) and unhealthy diets are risk factors of metabolic disease including type 2 diabetes (T2D). Genetic, nongenetic, and epigenetic data propose a role of the key metabolic regulator peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PPARGC1A) in the development of T2D. Objective: Our objective was to investigate gene expression and DNA methylation of PPARGC1A and coregulated oxidative phosphorylation (OXPHOS) genes in LBW and normal birth weight (NBW) subjects during control and high-fat diets. Design, Subjects, and Main Outcome Measures: Twenty young healthy men with LBW and 26 matched NBW controls were studied after 5 d high-fat overfeeding (+50% calories) and after a control diet in a randomized manner. Hyperinsulinemic-euglycemic clamps were performed and skeletal muscle biopsies excised. DNA methylation and gene expression were measured using bisulfite sequencing and quantitative real-time PCR, respectively. Results: When challenged with high-fat overfeeding, LBW subjects developed peripheral insulin resistance and reduced PPARGC1A and OXPHOS (P < 0.05) gene expression. PPARGC1A methylation was significantly higher in LBW subjects (P = 0.0002) during the control diet. However, PPARGC1A methylation increased in only NBW subjects after overfeeding in a reversible manner. DNA methylation of PPARGC1A did not correlate with mRNA expression. Conclusions: LBW subjects developed peripheral insulin resistance and decreased gene expression of PPARGC1A and OXPHOS genes when challenged with fat overfeeding. The extent to which our finding of a constitutively increased DNA methylation in the PPARGC1A promoter in LBW subjects may contribute needs to be determined. We provide the first experimental support in humans that DNA methylation induced by overfeeding is reversible.
  •  
2.
  • Gillberg, Linn, et al. (author)
  • Adipose tissue transcriptomics and epigenomics in low birthweight men and controls : role of high-fat overfeeding
  • 2016
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:4, s. 799-812
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. Methods mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. Results We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate < 5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate < 5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Conclusions/interpretation Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
  •  
3.
  • Gillberg, Linn, et al. (author)
  • Fasting unmasks differential fat and muscle transcriptional regulation of metabolic gene sets in low versus normal birth weight men
  • 2019
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 47, s. 341-351
  • Journal article (peer-reviewed)abstract
    • Background: Individuals born with low birth weight (LBW) have an increased risk of metabolic diseases when exposed to diets rich in calories and fat but may respond to fasting in a metabolically preferential manner. We hypothesized that impaired foetal growth is associated with differential regulation of gene expression and epigenetics in metabolic tissues in response to fasting in young adulthood. Methods: Genome-wide expression and DNA methylation were analysed in subcutaneous adipose tissue (SAT) and skeletal muscle from LBW and normal birth weight (NBW) men after 36 h fasting and after an isocaloric control study using microarrays. Findings: Transcriptome analyses revealed that expression of genes involved in oxidative phosphorylation (OXPHOS) and other key metabolic pathways were lower in SAT from LBW vs NBW men after the control study, but paradoxically higher in LBW vs NBW men after 36 h fasting. Thus, fasting was associated with downregulated OXPHOS and metabolic gene sets in NBW men only. Likewise, in skeletal muscle only NBW men downregulated OXPHOS genes with fasting. Few epigenetic changes were observed in SAT and muscle between the groups. Interpretation: Our results provide insights into the molecular mechanisms in muscle and adipose tissue governing a differential metabolic response in subjects with impaired foetal growth when exposed to fasting in adulthood. The results support the concept of developmental programming of metabolic diseases including type 2 diabetes. Fund: The Swedish Research Council, the Danish Council for Strategic Research, the Novo Nordisk foundation, the Swedish Foundation for Strategic Research, The European Foundation for the Study of Diabetes, The EU 6th Framework EXGENESIS grant and Rigshospitalet.
  •  
4.
  • Rönn, Tina, et al. (author)
  • Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood.
  • 2015
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:13, s. 3792-3813
  • Journal article (peer-reviewed)abstract
    • Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed DNA methylation of ∼480,000 sites in human adipose tissue from 96 males and 94 females, and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1,050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of ageing in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2,825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with methylation of 711 sites, annotated to e.g. RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for metabolic diseases and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
  •  
5.
  • Baumeier, Christian, et al. (author)
  • Hepatic DPP4 DNA methylation associates with fatty liver
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:1, s. 25-35
  • Journal article (peer-reviewed)abstract
    • Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence ofmetabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4. In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucoseinduced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.
  •  
6.
  • Benrick, Anna, 1979, et al. (author)
  • Electroacupuncture mimics exercise-induced changes in skeletal muscle gene expression in polycystic ovary syndrome women.
  • 2020
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 105:6, s. 2027-2041
  • Journal article (peer-reviewed)abstract
    • Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown.To identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS).Participants: In a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays.A single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q<0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q<0.20), and these changes correlated with altered expression of 101 genes (p<0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these two genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis.Our findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.
  •  
7.
  • Benrick, Anna, 1979-, et al. (author)
  • Electroacupuncture mimics exercise-induced changes in skeletal muscle gene expression in women with polycystic ovary syndrome
  • 2020
  • In: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 105:6, s. 2027-2041
  • Journal article (peer-reviewed)abstract
    • ContextAutonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown.ObjectiveTo identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS).Design/ParticipantsIn a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays.ResultsA single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes (P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis.ConclusionOur findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.
  •  
8.
  • Bysani, Madhusudhan, et al. (author)
  • Epigenetic alterations in blood mirror age-associated DNA methylation and gene expression changes in human liver
  • 2017
  • In: Epigenomics. - : Future Medicine Ltd. - 1750-1911 .- 1750-192X. ; 9:2, s. 105-122
  • Journal article (peer-reviewed)abstract
    • Aim: To study the impact of aging on DNA methylation and mRNA expression in human liver. Experimental procedures: We analysed genome-wide DNA methylation and gene expression in human liver samples using Illumina 450K and HumanHT12 expression BeadChip arrays. Results: DNA methylation analysis of ∼455,000 CpG sites in human liver revealed that age was significantly associated with altered DNA methylation of 20,396 CpG sites. Comparison of liver methylation data with published methylation data in other tissues showed that vast majority of the age-associated significant CpG sites overlapped between liver and blood, whereas a smaller overlap was found between liver and pancreatic islets or adipose tissue, respectively. We identified 151 genes whose liver expression also correlated with age. Conclusions: We identified age-associated DNA methylation and expression changes in human liver that are partly reflected by epigenetic alterations in blood.
  •  
9.
  • Christiansen, Colette, et al. (author)
  • Adipose methylome integrative-omic analyses reveal genetic and dietary metabolic health drivers and insulin resistance classifiers
  • 2022
  • In: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Background: There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. Methods: Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. Results: We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. Conclusions: Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.
  •  
10.
  • Davegårdh, Cajsa, et al. (author)
  • Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects
  • 2017
  • In: BMC Medicine. - : Springer Science and Business Media LLC. - 1741-7015. ; 15:1, s. 1-27
  • Journal article (peer-reviewed)abstract
    • Background: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. Methods: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. Results: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. Conclusions: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 38
Type of publication
journal article (37)
research review (1)
Type of content
peer-reviewed (37)
other academic/artistic (1)
Author/Editor
Ling, Charlotte (37)
Perfilyev, Alexander (18)
Vaag, Allan (16)
Rönn, Tina (13)
Groop, Leif (11)
show more...
Volkov, Petr (10)
Poulsen, Pernille (8)
Pihlajamäki, Jussi (8)
Benrick, Anna, 1979- (8)
Almgren, Peter (7)
Eriksson, Karl-Fredr ... (5)
Gillberg, Linn (5)
Dayeh, Tasnim (5)
Kokosar, Milana (5)
Olsson, Anders H (4)
Stener-Victorin, Eli ... (4)
de Mello, Vanessa D. (4)
Jansson, Per-Anders, ... (3)
Ohlsson, Claes, 1965 (3)
Ridderstråle, Martin (3)
Brøns, Charlotte (3)
Jansson, Per-Anders (3)
Stener-Victorin, E (3)
Davegårdh, Cajsa (3)
de Mello, Vanessa (3)
Pedersen, M. (2)
Dekker-Nitert, Marlo ... (2)
Hansson, Ola (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
Dahlman, Ingrid (2)
Stener-Victorin, Eli ... (2)
Eliasson, Lena (2)
Bacos, Karl (2)
Källman, Thomas, 197 ... (2)
Iggman, David (2)
Parikh, Hemang (2)
Pillon, Nicolas J. (2)
Behre, Carl Johan, 1 ... (2)
Lindgren, Eva (2)
Sazonova, Antonina (2)
Krook, Anna (2)
Hjort, Line (2)
Storgaard, Heidi (2)
Garcia-Calzon, Sonia (2)
Grunnet, Louise G. (2)
Säll, Johanna (2)
Brons, C. (2)
Scheele, C. (2)
show less...
University
Lund University (36)
University of Gothenburg (11)
Karolinska Institutet (10)
University of Skövde (5)
Uppsala University (4)
Linköping University (1)
Language
English (38)
Research subject (UKÄ/SCB)
Medical and Health Sciences (38)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view