SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Jianjun) ;lar1:(su)"

Sökning: WFRF:(Liu Jianjun) > Stockholms universitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Humphreys, Keith, et al. (författare)
  • The Genetic Structure of the Swedish Population
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:8, s. e22547-
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st)) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.
  •  
2.
  • Liu, Rujuan, et al. (författare)
  • Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase
  • 2009
  • Ingår i: International Journal of Biochemistry and Cell Biology. - : Elsevier BV. - 1357-2725 .- 1878-5875. ; 41:6, s. 1371-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenylate kinase 4 (AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase (AK) family although it shares high sequence homology with other AKs. It remains unclear what physiological function AK4 might play or why it is enzymatically inactive. In this study, we showed increased AK4 protein levels in cultured cells exposed to hypoxia and in an animal model of the neurodegenerative disease amyotrophic lateral sclerosis. We also showed that short hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and increased cell death. Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H(2)O(2) induced cell death. Proteomic studies revealed that the mitochondrial ADP/ATP translocases (ANTs) interacted with AK4 and higher amount of ANT was co-precipitated with AK4 when cells were exposed to H(2)O(2) treatment. In addition, structural analysis revealed that, while AK4 retains the capability of binding nucleotides, AK4 has a glutamine residue instead of a key arginine residue in the active site well conserved in other AKs. Mutation of the glutamine residue to arginine (Q159R) restored the adenylate kinase activity with GTP as substrate. Collectively, these results indicate that the enzymatically inactive AK4 is a stress responsive protein critical to cell survival and proliferation. It is likely that the interaction with the mitochondrial inner membrane protein ANT is important for AK4 to exert the protective benefits to cells under stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy