SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) ;pers:(Kabiri Samani Majid 1976)"

Sökning: WFRF:(Liu Johan 1960) > Kabiri Samani Majid 1976

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cometto, O., et al. (författare)
  • Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics
  • 2017
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 9:8, s. 7456-7464
  • Tidskriftsartikel (refereegranskat)abstract
    • High anisotropic thermal materials, which allow heat to dissipate in a preferential direction, are of interest as a prospective material for electronics as an effective thermal management solution for hot spots. However, due to their preferential heat propagation in the in-plane direction, the heat spreads laterally instead of vertically. This limitation makes these materials ineffective as the density of hot spots increases. Here, we produce a new dielectric thin film material at room temperature, named vertically ordered nanocrystalline h-BN (voBN). It is produced such that its preferential thermally conductive direction is aligned in the vertical axis, which facilitates direct thermal extraction, thereby addressing the increasing challenge of thermal crosstalk. The uniqueness of voBN comes from its h-BN nanocrystals where all their basal planes are aligned in the direction normal to the substrate plane. Using the 3 omega method, we show that voBN exhibits high anisotropic thermal conductivity (TC) with a 16-fold difference between through-film TC and in-plane TC (respectively 4.26 and 0.26 W.m(-1).K-1). Molecular dynamics simulations also concurred with the experimental data, showing that the origin of this anisotropic behavior is due to the nature of voBN's plane ordering. While the consistent vertical ordering provides an uninterrupted and preferred propagation path for phonons in the through-film direction, discontinuity in the lateral direction leads to a reduced in-plane TC. In addition, we also use COMSOL to simulate how the dielectric and thermal properties of voBN enable an increase in hot spot density up to 295% compared with SiO2, without any temperature increase.
  •  
2.
  • Fu, Yifeng, 1984, et al. (författare)
  • Graphene related materials for thermal management
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
3.
  • Banerjee, Debashree, et al. (författare)
  • Elevated thermoelectric figure of merit of n-type amorphous silicon by efficient electrical doping process
  • 2018
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 44, s. 89-94
  • Tidskriftsartikel (refereegranskat)abstract
    • The currently dominant thermoelectric (TE) materials used in low to medium temperature range contain Tellurium that is rare and mild-toxic. Silicon is earth abundant and environment friendly, but it is characterized by a poor TE efficiency with a low figure of merit, ZT. In this work, we report that ZT of amorphous silicon (a-Si) thin films can be enhanced by 7 orders of magnitude, reaching ∼0.64 ± 0.13 at room temperature, by means of arsenic ion implantation followed by low-temperature dopant activation. The dopant introduction employed represents a highly controllable doping technique used in standard silicon technology. It is found that the significant enhancement of ZT achieved is primarily due to a significant improvement of electrical conductivity by doping without crystallization so as to maintain the thermal conductivity and Seebeck coefficient at the level determined by the amorphous state of the silicon films. Our results open up a new route towards enabling a-Si as a prominent TE material for cost-efficient and environment-friendly TE applications at room temperature.
  •  
4.
  • Darmawan, C. C., et al. (författare)
  • Graphene-CNT hybrid material as potential thermal solution in electronics applications
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). - 9781538630556 ; , s. 190-193
  • Konferensbidrag (refereegranskat)abstract
    • Graphene and CNT have great potential in electronics applications. This work explored the possibility of integrating 1D CNT and 2D graphene into a 3D covalently bonded structure, i.e. a graphene-CNT hybrid material for thermal management application. The graphene-CNT hybrid material was later investigated morphologically and thermally to observe its heat dissipation capability.
  •  
5.
  • Edwards, Michael, 1986, et al. (författare)
  • Finite element simulation of 2D-based materials as heat spreaders
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Since the discovery of graphene, the first discovered 2D material, by Novoselov and Geim in 2004, the field of 2D materials has taken off and about 20 further 2D materials have been found. One of the most promising of these materials for the passive cooling of chips is hBN. HBN has the very unusual combination of being electrically insulating and thermally conductive, which potentially makes it an ideal material for both laterally spreading heat and passivating hotspots on chips. This gives hBN an advantage over graphene, where the chip requires a SiO2 passivation layer to prevent short circuits. To help evaluate the performance of these heat spreading films, a finite element model has been devised to support the experimental work undertaken in various publications. This model has been validated with experimental data and suggests that both graphene-And hBN-based materials have significant potential in lateral heat spreading applications.
  •  
6.
  • Gutierrez, Martí, 1993, et al. (författare)
  • Sintering of SiC enhanced copper paste for high power applications
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). - 9781538630556 ; , s. 151-156
  • Konferensbidrag (refereegranskat)abstract
    • In this work a Cu paste consisting in both micro and nanoparticles was produced. The copper paste was produced with different additive weight percentages of Ag coated SiC and sintered for 30min at 500°C under 6,5MPa in N2 atmosphere. The thermal resistance and composition of the resulting joints was studied. XPS and EDX measurements show no significant oxidation of the Cu after sintering, which is attributed to the combination of reductive agents in the paste and the inert atmosphere. SEM images of cross sections show contacts with no voids between the SiC particles and the copper matrix. Thermal conductivity measurements with laser flash analysis (LFA) show that the additive increases the effective thermal conductivity to more than double of that of the pure copper paste at 2% additive weight percentage, but bigger amounts yield smaller improvements and presumably would eventually worsen it.
  •  
7.
  • Han, H. X., et al. (författare)
  • Functionalization mediates heat transport in graphene nanoflakes
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by similar to 28 degrees C for a chip operating at 1,300 Wcm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.
  •  
8.
  • Hansson, Josef, 1991, et al. (författare)
  • Synthesis of a Graphene Carbon Nanotube Hybrid Film by Joule Self-heating CVD for Thermal Applications
  • 2018
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503.
  • Konferensbidrag (refereegranskat)abstract
    • Hybrid films based on vertically aligned carbon nanotubes (CNTs) on graphene or graphite sheets have been proposed for application as thermal interface materials and micro heat sinks. However, the fabrication of these materials are limited to small scale, expensive and complicated chemical vapor deposition (CVD) for CNT synthesis. We present a new method for direct growth of CNTs on one or both sides of a thin graphene film (GF) using joule self-heating of the graphene film to provide the necessary heat for the thermal breakdown of carbon feedstock in a CVD process. The resulting CNT forests show good density and alignment consistent with regular CVD synthesis processes on silicon surfaces. The resulting double sided GF/CNT hybrid film is directly applicable as a thermal pad. The CNT forest has a thermal conductivity of 30 W/mK, measured by pulsed photothermal reflectance, and the total thermal interface resistance between aluminum blocks was measured to be 60 Kmm 2 /W using an ASTM D5470 compliant 1-D measurement setup. This method of directly synthesizing CNTs on graphene films is more energy efficient and capable of larger volume production compared to traditional CVD methods. It is also compatible with scaling up towards continuous roll-to-roll production for large scale commercial production, one of the major limitations preventing CVD-grown CNTs from commercial applications
  •  
9.
  • Kabiri Samani, Majid, 1976, et al. (författare)
  • Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds
  • 2018
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 2018:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and carbon nanotubes have received much attention for thermal management application due to their unique thermal performance. Theoretical work suggests that a covalent bond can combine 1D carbon nanotubes with 2D graphene together to extend the excellent thermal property to three dimensions for heat dissipation. This paper experimentally demonstrates the high heat dissipation capability of a freestanding 3D multiwall carbon nanotube (MWCNT) and graphene hybrid material. Using high-resolution transmission electron microscopy and pulsed photothermal reflection measurement method, the covalent bonds between MWCNT and planar graphene are microscopically and numerically demonstrated. Thermal resistance at the junction with covalent bonds is 9×10^−10 Kelvin square meter per watt, which is three orders of magnitude lower than van der Waals contact. Joule heating method is used to verify the extra cooling effect of this 3D hybrid material compared to graphite film. A demonstrator using high power chip is developed to demonstrate the applicability of this hybrid material in thermal application. Temperature at hot spots can be decreased by around 10°C with the assistance of this hybrid material. These findings are very significant for understanding the thermal conduction during combining 1D and 2D carbon material together for future thermal management application.
  •  
10.
  • Kabiri Samani, Majid, 1976, et al. (författare)
  • Thermal conductivity enhancement of carbon@ carbon nanotube arrays and bonded carbon nanotube network
  • 2019
  • Ingår i: Materials Research Express. - : IOP Publishing. - 2053-1591. ; 6:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon nanotubes (CNTs) are long considered as a promising material for thermal applications. However, problems such as low volume CNT fraction abhorrent to practical applications have been raising the demand for novel architecture of this material. Here we demonstrate two fabrication methods, in which a self-assembly method for fabricating covalent-bonded CNT network (3D CNT) and another method for covalent-bonded C to CNTs (C@CNT) network, and presented both as a potential method to enhance thermal conductivity of CNT arrays. We utilized pulsed photothermal reflectance technique and using new four-layer heat conduction model based on the transmission-line theory to measure thermal conductivity of the samples. The 3D CNT with thermal conductivity of 21 W mK(-1) and C@CNT with thermal conductivity of 26 W mK(-1) turn out to be an excellent candidate for thermal interface material as the thermal conductivity increased by 40% and 70% respectively as compared to conventional CNT arrays. The improvement is attributed to the efficient thermal routines constructed between CNTs and secondary CNTs in 3D CNT and between C layer and CNTs in C@CNT. The other factor to improve thermal conductivity of the samples is decreasing air volume fraction in CNT arrays. Our fabrication methods provide a simple method but effective way to fabricate 3D CNT and C@CNT and extend the possibility of CNTs towards TIM application.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy