SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) ;pers:(Zhang Yong 1982)"

Sökning: WFRF:(Liu Johan 1960) > Zhang Yong 1982

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Hao, et al. (författare)
  • Graphene oxide for nonvolatile memory application by using electrophoretic technique
  • 2020
  • Ingår i: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental work presented here, for the first time using electrophoretic technique to fabricate graphene oxide (GO)-based resistive random access memory (RRAM). By using electrophoretic technique, nonvolatile RRAM devices with Aluminum (Al)/GO/Indium tin oxide (ITO) cross-bar sandwich-like structure were fabricated. The fabricated devices show typical bipolar resistant switching behavior with ON/OFF ratio more than 10, retention time more than 102 s, and transition voltage less than 1.7 V. The switching mechanism for the devices is ascribed to the formation and rupture of the conducting filament induced by the diffusion of oxygen ions. The results show that the electrophoretic technique holds great potential for film manufacturing for RRAM.
  •  
2.
  • Zhang, Yong, 1982, et al. (författare)
  • Properties of Undoped Few-Layer Graphene-Based Transparent Heaters
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In many applications like sensors, displays, and defoggers, there is a need for transparent and efficient heater elements produced at low cost. For this reason, we evaluated the performance of graphene-based heaters with from one to five layers of graphene on flexible and transparent polyethylene terephthalate (PET) substrates in terms of their electrothermal properties like heating/cooling rates and steady-state temperatures as a function of the input power density. We found that the heating/cooling rates followed an exponential time dependence with a time constant of just below 6 s for monolayer heaters. From the relationship between the steady-state temperatures and the input power density, a convective heat-transfer coefficient of 60 W·m−2·°C−1 was found, indicating a performance much better than that of many other types of heaters like metal thin-film-based heaters and carbon nanotube-based heaters.
  •  
3.
  • Zhang, Yong, 1982, et al. (författare)
  • Transparent heaters based on CVD grown few-layer graphene
  • 2022
  • Ingår i: Journal of Materials Science: Materials in Electronics. - : Springer Science and Business Media LLC. - 1573-482X .- 0957-4522. ; 33:7, s. 3586-3594
  • Tidskriftsartikel (refereegranskat)abstract
    • The outstanding thermal and optical properties of graphene make it tremendously interesting as heating elements. In this work, we demonstrate few-layer graphene as heating elements on glass substrate by chemical vapor deposition (CVD) method combined with a layer-by-layer transfer process. The electrothermal performance was studied in terms of applied voltage, heating/cooling rate and input power density. The results show that a three-layer graphene film heater can reach an equilibrium temperature up to 102 °C and a maximum heating rate of 1.8 °C/s when 60 V voltage was applied. Simulations were further performed to rationalize the experimental results, in which the effect of heat transfer coefficient, electric conductivity, and the effective stress distribution was discussed. It was found that the adhesion between graphene and substrate is very important for the heat performance, especially at high temperatures. Our results indicate that graphene-based films are promising candidate materials for the next generation of transparent heating elements.
  •  
4.
  • Bao, Jie, 1982, et al. (författare)
  • Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging
  • 2016
  • Ingår i: Journal of Physics D: Applied Physics. - : IOP Publishing. - 1361-6463 .- 0022-3727. ; 49:July 2016, s. 265501-
  • Tidskriftsartikel (refereegranskat)abstract
    • The need for electrically insulating materials with a high in-plane thermal conductivity for lateral heat spreading applications in electronic devices has intensified studies of layered hexagonal boron nitride (h-BN) films. Due to its physicochemical properties, h-BN can be utilised in power dissipating devices such as an electrically insulating heat spreader material for laterally redistributing the heat from hotspots caused by locally excessive heat flux densities. In this study, two types of boron nitride based heat spreader test structures have been assembled and evaluated for heat dissipation. The test structures separately utilised a few-layer h-BN film with and without graphene enhancement drop coated onto the hotspot test structure. The influence of the h-BN heat spreader films on the temperature distribution across the surface of the hotspot test structure was studied at a range of heat flux densities through the hotspot. It was found that the graphene-enhanced h-BN film reduced the hotspot temperature by about 8–10°C at a 1000 W/cm2 heat flux density, a temperature decrease significantly larger than for h-BN film without graphene enhancement. Finite element simulations of the h-BN film predict that further improvements in heat spreading ability are possible if the thermal contact resistance between the film and test chip are minimised.
  •  
5.
  • Chen, Jiajia, et al. (författare)
  • Characterization of Longitudinal Thermal Conductivity of Graphene Film
  • 2021
  • Ingår i: 2021 22nd International Conference on Electronic Packaging Technology, ICEPT 2021.
  • Konferensbidrag (refereegranskat)abstract
    • The chase of high performance by chip manufacturers has greatly increased the power consumption of integrated circuits, which brings great challenges to the heat dissipation of electronics systems. It has also slowed down following up of the Moore's Law, and it is expected to hit the wall soon [1]. Graphene film with high in-plane thermal conductivity is one of the key materials to make it possible for electronics industry to continue to follow the Moore's Law. However, there are few studies focusing on the longitudinal thermal conductivity of graphene films. The purpose of this study is to investigate the longitudinal thermal conductivity of graphene films according to ASTM D5470 [2]. The results show that the longitudinal thermal conductivity of the pressed graphene film is greater than that of the unpressurized graphene film. The longitudinal thermal conductivity is 10.6 W/m· K for the unpressurized graphene film and 20.6 W/m· K for the pressed graphene film.
  •  
6.
  • Edwards, Michael, 1986, et al. (författare)
  • Finite element simulation of 2D-based materials as heat spreaders
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Since the discovery of graphene, the first discovered 2D material, by Novoselov and Geim in 2004, the field of 2D materials has taken off and about 20 further 2D materials have been found. One of the most promising of these materials for the passive cooling of chips is hBN. HBN has the very unusual combination of being electrically insulating and thermally conductive, which potentially makes it an ideal material for both laterally spreading heat and passivating hotspots on chips. This gives hBN an advantage over graphene, where the chip requires a SiO2 passivation layer to prevent short circuits. To help evaluate the performance of these heat spreading films, a finite element model has been devised to support the experimental work undertaken in various publications. This model has been validated with experimental data and suggests that both graphene-And hBN-based materials have significant potential in lateral heat spreading applications.
  •  
7.
  • Gao, Zhaoli, 1986, et al. (författare)
  • Graphene Heat Spreader for Thermal Management of Hot Spots
  • 2013
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. - 9781479902330 ; , s. 2075-2078
  • Konferensbidrag (refereegranskat)abstract
    • Monolayer graphene was fabricated using thermal chemical vapor deposition (TCVD) as heat spreaders in electronic packaging. Platinum (Pt) thermal evaluation chips were utilized to evaluate the thermal performance of the graphene heat spreaders. Temperature of hot spot driven at a heat flux of up to 430W·cm -2 was decreased by about 13 °C with the attaching of the graphene heat spreader. We demonstrate the potentials of using CMOS compatible TCVD process to make graphene as heat spreader for power dissipation needs. © 2013 IEEE.
  •  
8.
  • Gao, Zhaoli, et al. (författare)
  • Graphene Heat Spreader for Thermal Management of Hot Spots in Electronic Packaging
  • 2012
  • Ingår i: Proceedings of the 18th Therminic International Workshop on Thermal Investigations of ICs and Systems. - 9782355000225 ; , s. 217-220
  • Konferensbidrag (refereegranskat)abstract
    • Monolayer graphene was fabricated using thermal CVD for the application of heat spreader in electronic packaging. Platinum (Pt) micro-heater embedded thermal testing chips were utilized to evaluate the thermal performance of the graphene heat spreader. The hot spot temperature was decreased by about 5 degrees C at a heat flux of up to 800W/cm2. It is possible to further improve the thermal performance of graphene heat spreader by optimizing the synthesis parameters and transfer process.
  •  
9.
  • Gao, Zhaoli, 1986, et al. (författare)
  • Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots
  • 2013
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 61, s. 342-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene of different layer numbers was fabricated using thermal chemical vapor deposition (TCVD), and it was demonstrated as a heat spreader in electronic packaging. Platinum thermal evaluation chips were used to evaluate the thermal performance of the graphene heat spreaders. The temperature of a hot spot driven at a heat flux of up to 430 W cm(-2) was decreased from 121 degrees C to 108 degrees C (Delta T approximate to 13 degrees C) with the insertion of the monolayer graphene heat spreader, compared with the multilayer (n = 6-10) ones' temperature drop of similar to 8 degrees C. Various parameters affecting the thermal performance of graphene heat spreaders were discussed, e.g. layer numbers of graphene, phonon scattering, thermal boundary resistance. We demonstrate the potentials of using a complementary metal oxide semiconductor compatible TCVD process to utilize graphene as a heat spreader for heat dissipation purposes.
  •  
10.
  • Gong, Xinjian, et al. (författare)
  • Fabrication and Characterization of Graphene/polyimide Composite Film
  • 2021
  • Ingår i: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Konferensbidrag (refereegranskat)abstract
    • A flexible graphene and polyimide composite film was designed and fabricated in this study. A polyimide solution was used as an adhesive layer to connect graphene film and polyimide film by hot-pressing. Laser flash thermal analysis method was carried out to evaluate the thermal diffusion coefficient of different thicknesses of the fabricated films at various temperatures. Bending test was carried out to evaluate the stability and reliability of the composite film. Scanning electron microscopy was applied to characterize the cross-section of the composite film before and after the peel test. IR imaging was employed to compare the heat diffusion of the composite film and traditional flexible copper clad laminate. The results show that the composite film has significantly better thermal diffusion capacity than traditional flexible copper clad laminate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy