SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2005-2009);pers:(Wang Teng 1983)"

Sökning: WFRF:(Liu Johan 1960) > (2005-2009) > Wang Teng 1983

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Johan, 1960, et al. (författare)
  • Stem Cell Growth and Migration on Nanofibrous Polymer Scaffolds and Micro-Fluidic Channels on Silicon-Chip
  • 2009
  • Ingår i: Proceedings of the 2009 Electronic Components and Technology Conference. - 0569-5503. - 9781424444762 ; , s. 1080-1085
  • Konferensbidrag (refereegranskat)abstract
    • Stem cell growth and migration on nanofibrous scaffolds and micro-fluidic channels on Silicon-Chip were studied by using neural stem cells isolated from adult rats' brain. Electrospinning and lithographic technique were used for developing nanofibrous-polylactic acid (PLA) and polyurethane (PU) based-scaffolds and micro-fluidic channels on Si-Chips respectively. Immunocytochemical and morphological analysis showed better cell-matrix interaction with profound adhesion, proliferation and migration on the developed scaffolds. Cell culture assay with microfluidic channel revealed the ability of developed channel system in guiding neuronal stem cell growth towards specified directions. These studies extend the possibility of using developed nanofibrous scaffolds and micro-fluidic channel system for future electrical signal transmission based on living neural stem cells.
  •  
2.
  • Wang, Teng, 1983, et al. (författare)
  • Development of Carbon Nanotube Bumps for Ultra Fine Pitch Flip Chip Interconnection
  • 2006
  • Ingår i: 1st Electronics Systemintegration Technology Conference; Dresden, Saxony; Germany; 5 September 2006 through 7 September 2006. - 9781424405527 ; 2, s. 892-895
  • Konferensbidrag (refereegranskat)abstract
    • Since 1991, carbon nanotubes have been considered for successful applications in various fields due to their unique properties. In the present work, carbon nanotubes are applied in integrated circuit packaging, as the bump interconnection for flip chip. The reason for choosing carbon nanotubes as the bump material is their special electrical, mechanical and thermal properties, which may promote both the performance and reliability of the flip chip packaging. Moreover, carbon nanotubes can be formed according to a precisely predefined small-scale pattern, which makes extremely high density interconnection possible. Vertically aligned carbon nanotubes are grown on silicon in the form of square arrays of different sizes, heights and pitches. Attempts to use thermal compression and anisotropic conductive adhesive to bond chips carrying carbon nanotube bumps with ceramic substrates are also executed. Mechanical testing is performed afterward to determine the strength of the bonding interfaces. The strength of the bonding by thermal compression is very weak, in the range from 1.9 to 7.0 g/mm2. The bonding by anisotropic conductive adhesive is much stronger, indicating a possible approach to bond chips carrying carbon nanotube bumps.
  •  
3.
  • Wang, Teng, 1983, et al. (författare)
  • Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter demonstrates the transfer and formation of aligned carbon nanotube (CNT) arrays at low temperature by imprinted conductive adhesive. A thermoplastic isotropic conductive adhesive is patterned by an imprint and heat transfer process. The CNTs grown by thermal chemical vapor deposition are then transferred to another substrate by the conductive adhesive, forming predefined patterns. The current-voltage response of the transferred CNT bundles verifies that good electrical connection has been established. This process can enable the integration of CNTs into various temperature-sensitive processeses and materials.
  •  
4.
  • Wang, Teng, 1983, et al. (författare)
  • Through silicon vias filled with planarized carbon nanotube bundles
  • 2009
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 20:48
  • Tidskriftsartikel (refereegranskat)abstract
    • The feasibility of using carbon nanotube (CNT) bundles as the fillers of through silicon vias (TSVs) has been demonstrated. CNT bundles are synthesized directly inside TSVs by thermal chemical vapor deposition (TCVD). The growth of CNTs in vias is found to be highly dependent on the geometric dimensions and arrangement patterns of the vias at atmospheric pressure. The CNT-Si structure is planarized by a combined lapping and polishing process to achieve both a high removal rate and a fine surface finish. Electrical tests of the CNT TSVs have been performed and their electrical resistance was found to be in the few hundred ohms range. The reasons for the high electrical resistance have been discussed and possible methods to decrease the electrical resistance have been proposed.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Fan, Yi, et al. (författare)
  • A study of fluid coolant with carbon nanotube suspension for MicroChannel coolers
  • 2008
  • Ingår i: 2008 International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2008; Pudong, Shanghai; China; 28 July 2008 through 31 July 2008. - 9781424427406
  • Konferensbidrag (refereegranskat)abstract
    • In this work, silicon microchannel coolers were made using the Deep Ion Reactive Etching (DIRE) technique. Stable and homogeneous Carbon NanoTube (CNT) suspension was also prepared. Meanwhile, a closed-loop cooling test system was developed to investigate the heat removal of the silicon microchannel cooler with different coolants. The experimental setup included a test module, a minipump for providing controllable flow, and a fan system for cooling the circular fluid. Beside the inlet and outlet of the test module, two thermocouples and pressure gauges were set up to measure the temperature and pressure of the fluids. The heat removal of the silicon microchannel cooler using different CNT volume fraction of suspension coolant was studied. The results show that the microchannel cooler with CNT suspension as coolant could strengthen the heat removal capability of microchannel cooler. In addition to heat transfer enhancement, the microchannel cooler with CNT suspension coolant did not produce extra pressure drop in the present study.
  •  
10.
  • Fan, Yi, et al. (författare)
  • Computational Fluid Dynamics for Effects of Coolants on On-chip Cooling Capability with Carbon Nanotube Micro-fin Architectures
  • 2009
  • Ingår i: Microsystem Technologies. - : Springer Science and Business Media LLC. - 0946-7076 .- 1432-1858. ; 15:3, s. 375-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon nanotubes (CNTs) have shown a broad promising application in high mechanical strength and electronic structure. In this work, the effects of coolants on heat transfer capability of on-chip cooling with CNTs Micro-fin Architectures was studied, and the two-dimensional computational fluid dynamics (CFD) simulations have been done for a series of material parameters of coolants in this paper. The influences of thermal conductivity, density, specific heat and viscosity on cooling have been obtained in the case studies. The results demonstrate that pressure drop between the inlet and outlet of the cooling device is dependent on coolant's density and viscosity. Consequently, it will be necessary to find out a good balance between heat transfer capability and pressure drop. The simulation results also indicate that the heat sink capability will be better if there are more fin rows in the microchannel.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy