SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2010-2014);pers:(Fu C.)"

Sökning: WFRF:(Liu Johan 1960) > (2010-2014) > Fu C.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Du, Wenhui, et al. (författare)
  • New fast curing isotropic conductive adhesive for electronic packaging application
  • 2010
  • Ingår i: Proceedings - 2010 11th International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2010; Xi'an; 16 August 2010 through 19 August 2010. - 9781424481422 ; :Article number 5582446, s. 199-201
  • Konferensbidrag (refereegranskat)abstract
    • With the rapid development of technologies on high density assembly and packaging in electronic industry, isotropic conductive adhesive (ICA) has been paid more and more attention as a potential substitute of solder, due to its advantages of low processing temperature, simple processing conditions and good manufacturability. However, the curing time of most traditional ICA is more than half an hour. The process duration of ICA is 2 or 3 times longer than that of solder. Thus, low efficiencies of energy using and product manufacturing has been one of factors which limits widely application of ICA. Generally, the curing speed of ICA depends on types and amount of curing agent as well as curing temperature. In our previous experiments, the effects of curing temperature and amount of curing agent have been investigated. So, the present work attempts to choose a new kind of curing agent to shorten process duration of ICA. By using new curing agent, the curing duration of ICA could be shortened in 5 minutes with a high curing rate compared with the previous version. In addition, the basic performance including bulk resistivity and viscosity are also investigated in this work. Finally, we present some discussions about the further optimization of performance, for example regarding the ways of achieving better electrical conductivity with lower filler content and improvement of viscosity etc. © 2010 IEEE.
  •  
2.
  • Fan, Q., et al. (författare)
  • The effect of functionalized silver on rheological and electrical properties of conductive adhesives
  • 2011
  • Ingår i: ECS Transactions. - : The Electrochemical Society. - 1938-5862 .- 1938-6737. - 9781607682356 ; 34:1, s. 811-816
  • Konferensbidrag (refereegranskat)abstract
    • This research used low molecular surface modifiers, and observed that chemisorptions took place through the formation of a bond between silver surface and an adsorbed molecule, which improved the dispersion of silver flakes in the organic resin. Several different functionalizers, such as thioglycolic acid, silane and di-acid, were used to functionalize the silver surface. Results of shear viscosity, bulk resistivity etc. showed that by using these low molecular organic functionalizers, isotropic conductive adhesives (ICAs) with lower shear viscosity and better electrical conductivity at high silver fillers content were obtained. The adipic acid had the greatest effect on the rheological and electrical property of ICAs, so its weight percentage in silver flakes was also optimized; ICAs displayed the maximum electrical conductivity when there was 0.5 wt% of silver flakes.
  •  
3.
  • Fu, C., et al. (författare)
  • Optimization of stiffness for isotropic conductive adhesives
  • 2010
  • Ingår i: 2010 International Symposium on Advanced Packaging Materials: Microtech, APM '10. - 9781424467563 ; , s. 29-33
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • With the rapid developments of electronic packaging, there is an increasing demand on high performance isotropic conductive adhesives (ICAs). However, the traditional ICAs are brittle, sensitive for crack formation and delamination, which is one of the major drawbacks that limits their use in a wide range of applications. Therefore great efforts have been made to make conductive adhesives more flexible. The present work aims at studying of several chemicals in terms of flexibilizing materials to modify the stiffuess modulus of the conductive adhesives. The effect of the flexibilizers has been characterized by different methods, such as Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), Thermogravimetric Analysis (TGA), etc. Moreover, the electrical resistance, thermal conductivity and viscosity are also measured in various conditions. Experimental results indicate that one of the flexibilizing materials using flexible ester-linkage is particular of interest as it offers low electrical resistance, high thermal performance and low modulus without decreasing glass transition temperature (Tg) and influencing curing and decomposition conditions. ©2010 IEEE.
  •  
4.
  • Lai, H., et al. (författare)
  • A novel isotropic conductive adhesive with Ag flakes, BN and SiC nanoparticles
  • 2010
  • Ingår i: 2010 International Symposium on Advanced Packaging Materials: Microtech, APM '10. - 9781424467563 ; , s. 49-53
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Isotropic conductive adhesives (ICAs) with lower bonding temperature, higher resolution and environmental friendly have been used extensively in packaging process. In order to improve the electrical and thermal conductive properties of ICAs, two kinds of bimodal high temperature stable ICAs with matrix SHT6 and fillers with composition of macro silver flakes and boron nitride nanoparticles or macro silver flakes and silicon carbide nanoparticles were studied. In these two kinds of adhesives, the silver flakes were 75wt%, and the contents of nanoparticles were Owt%, 0.5wt%, 1.5wt%, 2.5wt%, 3wt%, 5wt% in weight. All the samples were cured at 150°C for 1 hour. SEM images and EDS results show the nanoparticles disperse randomly in the ICA. The electrical resistivity of these ICAs depends on the contents of silver flakes and is hardly affected by BN nanoparticles and SiC nanoparticles. The thermal conductivity of these ICAs increases firstly with the weight increase of the BN nanoparticles and SiC nanoparticles. And then it decreases when the content of the nanoparticles beyond a certain point. ©2010 IEEE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy