SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2015-2019);pers:(Ke W.)"

Sökning: WFRF:(Liu Johan 1960) > (2015-2019) > Ke W.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Q., et al. (författare)
  • Effect of sintering method on properties of nanosilver paste
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging, NordPac 2017, Goteborg, Sweden, 18-20 June 2017. ; , s. 186-189
  • Konferensbidrag (refereegranskat)abstract
    • Nanoscale silver paste has a good application prospect in heat dissipation of high-power chips due to the characteristics of low temperature sintering and high temperature service. The properties of the nanosilver paste including thermal conductivity, electrical conductivity, and shear strength are affected greatly by the sintering process. The influence of different sintering methods on the performance of the nanosilver paste was studied in this article. The nanosilver paste with 80.5 wt% nano-scale silver particles, 1.5 wt% submicron-scale SiC particles with Ag coating, 0.9 wt% dispersion agent, 10 wt% organic carrier and 7.1 wt% diluting agent was sintered at 260°C for 30 min with three different methods, heating table sintering, heating furnace sintering, and mixed sintering. The samples obtained by mixed sintering process have higher thermal conductivity than the ones obtained by heating furnace sintering method and heating table sintering method. The effect of sintering methods on shear strength of nanosilver paste was also investigated subsequently. Shear testing equipment was used to measure the shear strength of the samples gained by heating table sintering, heating furnace sintering, and air dry oven sintering. The maximum shear strength was obtained for the samples by heating table sintering method. The shear strength of samples by air dry oven sintering method was the minimum one.
  •  
2.
  • Huang, S., et al. (författare)
  • Improved reliability of electrically conductive adhesives joints on Cu-Plated PCB substrate enhanced by graphene protection barrier
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging, NordPac 2017, Goteborg, Sweden, 18-20 June 2017. - 9781538630556 ; , s. 143-146
  • Konferensbidrag (refereegranskat)abstract
    • Graphene protection barrier was introduced to the interface between the ECAs and Cu-plated wire to enhance the reliability of the ECAs joints on Cu-Plated PCB substrate due to its excellent properties of impermeability to all gases/salts as well as its thermal/chemical stability. The results of shear test indicated graphene protection barrier can improve the shear strength of the ECAs joints on Cu-plated PCB substrate by almost 22% after 500 hours high temperature and high humidity cyclic test. Characterizations by optical microscope and XPS were further performed to explain the mechanism. To sum up, it can be believed that the graphene protection barrier can dramatically enhance the reliability of the ECAs joints on Cu-Plated PCB substrate.
  •  
3.
  • Long, Xu, et al. (författare)
  • Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles
  • 2019
  • Ingår i: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 744, s. 406-414
  • Tidskriftsartikel (refereegranskat)abstract
    • SiC microparticles with various weight ratios (0.0, 0.5, 1.0 and 1.5 wt%) are incorporated into sintered silver nanoparticles (AgNP) as one of the promising packaging materials for high-power electronic devices. Mechanical properties and constitutive behaviour of sintered AgNP reinforced by SiC microparticles are investigated based on nanoindentation experiment and analytical approach. Nanoindentations were performed in the manner of continuous stiffness measurement for a maximum penetration depth of 2000 nm at a strain rate of 0.05 s−1. Particularly, a Berkovich indenter is utilized to evaluate the values of Young's modulus and hardness, and a spherical indenter is utilized to describe the constitutive behaviour. For sintered AgNP with 0.5 wt% SiC, the morphology exhibits uniformly compact microstructures to enable optimizing the heat conductivity, the yield strength and hardening capacity of sintered AgNP material is enhanced. To describe the constitutive behaviour, an analytical approach is proposed to simulate the indentation behaviour. The parameters in the modified power-law model are determined by fitting the average indentation responses. The developed correlation between microstructure and macroscopic properties facilitates the design of AgNP paste morphology and improves the mechanical properties of sintered AgNP in electronics packaging.
  •  
4.
  • Yang, Y., et al. (författare)
  • Heat dissipation performance of graphene enhanced electrically conductive adhesive for electronic packaging
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging, NordPac 2017, Goteborg, Sweden, 18-20 June 2017. - 9781538630556 ; , s. 125-128
  • Konferensbidrag (refereegranskat)abstract
    • Electrically conductive adhesive is a new type of environmentally interconnect material which can be used in electronic packaging to replace the traditional solders due to its advantages of simple applying process and low curing temperature. Silver coated graphene is employed in this work to enhance the thermal conductivity of the current commercial electrically conductive adhesive with very low thermal conductivity. Thermal conductivity of the electrically conductive adhesive was measured by laser flash thermal analyzer. The infrared thermal imager was utilized to obtain the temperature distribution of chip surface. The results indicated that the developed graphene enhanced electrically conductive adhesive has perfect heat performances. It can be believed that this new kind of electrically conductive adhesive possesses promising application in electronic packaging in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy