SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2015-2019);pers:(Nilsson Torbjörn 1962)"

Sökning: WFRF:(Liu Johan 1960) > (2015-2019) > Nilsson Torbjörn 1962

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansson, Josef, 1991, et al. (författare)
  • Effect of Fiber Concentration on Mechanical and Thermal Properties of a Solder Matrix Fiber Composite Thermal Interface Material
  • 2019
  • Ingår i: IEEE Transactions on Components, Packaging and Manufacturing Technology. - 2156-3985 .- 2156-3950. ; 9:6, s. 1045-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased demand on the mechanical and thermal properties on the thermal interface and die attach material creates a demand for materials with tailored material properties. Solder matrix fiber composites (SMFCs) have been shown to address these challenges, but have, so far, required complicated procedures and components. In this paper, we present the fabrication of a new type of SMFC based on commercially available fiber networks infiltrated with Sn-Ag-Cu alloy (SAC305) or indium using equipment for large-volume production. The composite material exhibits similar thermal properties compared to pure solder, and mechanical properties that can be tailored toward specific applications. We also show that the handling properties of the SMFC allows it to be used in process flows where multiple reflow cycles are required and can achieve a well-defined bond line thickness (BLT) and good bonding using fluxless reflow under pressure.
  •  
2.
  • Hansson, Josef, 1991, et al. (författare)
  • Novel nanostructured thermal interface materials: a review
  • 2018
  • Ingår i: International Materials Reviews. - : Informa UK Limited. - 0950-6608 .- 1743-2804. ; 63:1, s. 22-45
  • Forskningsöversikt (refereegranskat)abstract
    • The trend of continuing miniaturisation of microelectronics leads to new thermal management challenges. A key point in the heat removal process development is to improve the heat conduction across interfaces through improved thermal interface materials (TIMs). We identify the key areas for state-of-the art TIM research and investigate the current state of the field together with possible future advances.
  •  
3.
  • Hansson, Josef, 1991, et al. (författare)
  • Synthesis of a Graphene Carbon Nanotube Hybrid Film by Joule Self-heating CVD for Thermal Applications
  • 2018
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. ; 2018-May
  • Konferensbidrag (refereegranskat)abstract
    • Hybrid films based on vertically aligned carbon nanotubes (CNTs) on graphene or graphite sheets have been proposed for application as thermal interface materials and micro heat sinks. However, the fabrication of these materials are limited to small scale, expensive and complicated chemical vapor deposition (CVD) for CNT synthesis. We present a new method for direct growth of CNTs on one or both sides of a thin graphene film (GF) using joule self-heating of the graphene film to provide the necessary heat for the thermal breakdown of carbon feedstock in a CVD process. The resulting CNT forests show good density and alignment consistent with regular CVD synthesis processes on silicon surfaces. The resulting double sided GF/CNT hybrid film is directly applicable as a thermal pad. The CNT forest has a thermal conductivity of 30 W/mK, measured by pulsed photothermal reflectance, and the total thermal interface resistance between aluminum blocks was measured to be 60 Kmm 2 /W using an ASTM D5470 compliant 1-D measurement setup. This method of directly synthesizing CNTs on graphene films is more energy efficient and capable of larger volume production compared to traditional CVD methods. It is also compatible with scaling up towards continuous roll-to-roll production for large scale commercial production, one of the major limitations preventing CVD-grown CNTs from commercial applications
  •  
4.
  • Kabiri Samani, Majid, 1976, et al. (författare)
  • Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds
  • 2018
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 5:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and carbon nanotubes have received much attention for thermal management application due to their unique thermal performance. Theoretical work suggests that a covalent bond can combine 1D carbon nanotubes with 2D graphene together to extend the excellent thermal property to three dimensions for heat dissipation. This paper experimentally demonstrates the high heat dissipation capability of a freestanding 3D multiwall carbon nanotube (MWCNT) and graphene hybrid material. Using high-resolution transmission electron microscopy and pulsed photothermal reflection measurement method, the covalent bonds between MWCNT and planar graphene are microscopically and numerically demonstrated. Thermal resistance at the junction with covalent bonds is 9×10^−10 Kelvin square meter per watt, which is three orders of magnitude lower than van der Waals contact. Joule heating method is used to verify the extra cooling effect of this 3D hybrid material compared to graphite film. A demonstrator using high power chip is developed to demonstrate the applicability of this hybrid material in thermal application. Temperature at hot spots can be decreased by around 10°C with the assistance of this hybrid material. These findings are very significant for understanding the thermal conduction during combining 1D and 2D carbon material together for future thermal management application.
  •  
5.
  • Nilsson, Torbjörn, 1962, et al. (författare)
  • Enhanced cooling properties of radar antenna electronics using novel materials
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Thermal interface materials (TIM) of polymer networks and boron nitride were infiltrated with indium and investigated in parallel in order to produce drastically improved thermal properties of thermal interface material. The materials were composed of electrospun polymer or BN fiber network and infiltrated indium. The mechanical tensile and shear test showed that the electrospun polymer network has superior reliability properties. The materials were also investigated in terms of adherence to a surface. Practical tests showed that the indium infiltrated thermal interfae materials best adhere to a Sn coated surface. As a final benchmark the best interface material, polymer fiber-indium TIM (NanoTIM), was benchmarked against a state-of-The-Art interface material on the commercial market, using a demonstrator in a laser housing from Saab. The thermal resistance over a thermal joint was almost halfed by using the NanoTIM material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy