SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2020);mspu:(article)"

Sökning: WFRF:(Liu Johan 1960) > (2020) > Tidskriftsartikel

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Mengxiong, et al. (författare)
  • Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites
  • 2020
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 12:24, s. 27476-27484
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene-based thermally conductive polymer composites are of great importance for the removal of the excess heat generated by electronic devices. However, due to the orientation of graphene sheets in the polymer matrix, the through-plane thermal conductivity of polymer/graphene composites remains far from satisfactory. We here demonstrate a confined liquid-phase expansion strategy to fabricate highly oriented confined expanded graphite (CEG) aerogels. After being incorporated into epoxy resin (EP), the resulting EP/CEG composites exhibit a high through-plane thermal conductivity (4.14 ± 0.21 W m-1 K-1) at a quite low filler loading of 1.75 wt % (0.91 vol %), nearly 10 times higher than that of neat EP resin and 7.5 times higher than the in-plane thermal conductivity of the composite, indicating that the CEG aerogel has a high through-plane thermal conductivity enhancement efficiency that outperforms those of many graphite/graphene-based fillers. The facile preparation method holds great industrial application potential in fabricating anisotropic thermally conductive polymer composites.
  •  
2.
  • Fu, Yifeng, 1984, et al. (författare)
  • Graphene related materials for thermal management
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
3.
  • Liu, Hao, et al. (författare)
  • Graphene oxide for nonvolatile memory application by using electrophoretic technique
  • 2020
  • Ingår i: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental work presented here, for the first time using electrophoretic technique to fabricate graphene oxide (GO)-based resistive random access memory (RRAM). By using electrophoretic technique, nonvolatile RRAM devices with Aluminum (Al)/GO/Indium tin oxide (ITO) cross-bar sandwich-like structure were fabricated. The fabricated devices show typical bipolar resistant switching behavior with ON/OFF ratio more than 10, retention time more than 102 s, and transition voltage less than 1.7 V. The switching mechanism for the devices is ascribed to the formation and rupture of the conducting filament induced by the diffusion of oxygen ions. The results show that the electrophoretic technique holds great potential for film manufacturing for RRAM.
  •  
4.
  • Manchili, Swathi Kiranmayee, 1987, et al. (författare)
  • Effect of Nanopowder Addition on the Sintering of Water-Atomized Iron Powder
  • 2020
  • Ingår i: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. - : Springer Science and Business Media LLC. - 1073-5623. ; 51:9, s. 4890-4901
  • Tidskriftsartikel (refereegranskat)abstract
    • A promising method of improving the densification of powder metallurgical steel components is to blend nanopowder with the otherwise typically used micrometre-sized powder. The higher surface-to-volume ratio of nanopowder is hypothesized to accelerate the sintering process and increase the inter-particle contact area between the powder particles. This is supposed to enhance the material transport and improve the densification. In the present investigation, water-atomized iron powder (− 45 μm) was mixed separately with pure iron and low-carbon steel nanopowder, each at a ratio of 95 to 5 pct. These powder mixes were compacted at different pressures (400, 600 and 800 MPa) and then sintered at 1350 °C in a pure hydrogen atmosphere. The sintering behavior of the powder blend compacts was compared to that of the compact with micrometre-sized powder only. Densification commenced at much lower temperatures in the presence of nanopowder. To understand this, sintering at intermittent temperatures such as 500 °C and 700 °C was conducted. The fracture surface revealed that the nanopowder was sintered at between 500 °C and 700 °C, which in turn contributed to the densification of the powder mix at the lower temperature range. Based on the sintering experiments, an attempt was made to calculate the activation energy and identify the associated sinter mechanism using two different approaches. It was shown that the first approach yielded values in agreement with the grain-boundary diffusion mechanism. As the nanopowder content increased, there was an increase in linear shrinkage during sintering.
  •  
5.
  • Zhang, Yong, 1982, et al. (författare)
  • Properties of Undoped Few-Layer Graphene-Based Transparent Heaters
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In many applications like sensors, displays, and defoggers, there is a need for transparent and efficient heater elements produced at low cost. For this reason, we evaluated the performance of graphene-based heaters with from one to five layers of graphene on flexible and transparent polyethylene terephthalate (PET) substrates in terms of their electrothermal properties like heating/cooling rates and steady-state temperatures as a function of the input power density. We found that the heating/cooling rates followed an exponential time dependence with a time constant of just below 6 s for monolayer heaters. From the relationship between the steady-state temperatures and the input power density, a convective heat-transfer coefficient of 60 W·m−2·°C−1 was found, indicating a performance much better than that of many other types of heaters like metal thin-film-based heaters and carbon nanotube-based heaters.
  •  
6.
  • Chen, Shujing, et al. (författare)
  • Scalable production of thick graphene films for next generation thermal management applications
  • 2020
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 167, s. 270-277
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increasing demand on integration and better performance of portable electronics devices, the system operation temperatures are expected to continue to increase, leading eventually to degeneration in functional performance and reliability. Therefore, demand for thermal management materials that effectively spread heat and reduce heat density is urgent. The existing solution of pyrolytic graphite film (PGF) is unsatisfactory due to their low heat flux carrying capacity or low thermal conductivity, as well as poor mechanical performance. This work solves the problem by substituting ultra-thick (>75 mm) graphene film (GF) for PGF, offering more than three times higher heat flux carrying capacity. The conjugation of large crystallinity and firm structures endows GFs with excellent thermal conductive performance (up to 1204 +/- 35 W m(-1) K-1), great heat flux carrying capacity, and good foldability (5000 cycles folding). In addition to this, such a GF is produced based on an economically efficient and quasi industrial method incorporating continuous high-pressure homogenization processing (HPH), indicating an enormous potential as a new pathway to thermal management applications.
  •  
7.
  • Cui, Luqing, et al. (författare)
  • Low Cycle Fatigue Behavior and Microstructural Evolution of Nickel-based Superalloy M951G at Elevated Temperatures
  • 2020
  • Ingår i: Materials Characterization. - : Elsevier. - 1044-5803 .- 1873-4189. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Low cycle fatigue (LCF) tests of the newly developed nickel-based superalloy M951G have been conducted at 900 and 1000 °C under different total strain amplitudes. Results show that the fatigue properties, fracture mechanisms as well as coarsening of γ′ precipitates are dependent on testing temperatures and strain amplitudes. Fatigue life and cyclic stress response under the same total strain amplitude at 1000 °C are lower than that at 900 °C, which is due to the degradation of microstructures, shearing of γ′ precipitates by dislocations and serious oxidation. Fracture modes change from intergranular cracking to the mixed mode cracking as the strain amplitude increases. At low strain amplitudes, M951G alloy fails in the form of intergranular cracking owing to the oxidation of surface carbides and the relatively low deformation rate. At higher strain amplitudes, the strain localization in grain interior, the distribution of broken carbides and eutectics as well as the relatively higher strain rate are the main reasons for the formation of transgranular microcracks. Ultimately, the effects of fatigue conditions on coarsening of cubic γ′ precipitates are also analyzed from the aspect of γ′ volume fraction, fatigue life and flow stress difference between the γ/γ′ interfaces.
  •  
8.
  • Fazi, Andrea, 1992, et al. (författare)
  • Multiple growth of graphene from a pre-dissolved carbon source
  • 2020
  • Ingår i: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 31:34, s. 345601-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mono- to few-layer graphene materials are successfully synthesized multiple times using Cu-Ni alloy as a catalyst after a single-chemical vapor deposition (CVD) process. The multiple synthesis is realized by extracting carbon source pre-dissolved in the catalyst substrate. Firstly, graphene is grown by the CVD method on Cu-Ni catalyst substrates. Secondly, the same Cu-Nicatalyst foils are annealed, in absence of any external carbon precursor, to grow graphene using the carbon atoms pre-dissolved in the catalyst during the CVD process. This annealing process is repeated to synthesize graphene successfully until carbon is exhausted in the Cu-Ni foils. After the CVD growth and each annealing growth process, the as-grown graphene is removed using a bubbling transfer method. A wide range of characterizations are performed to examine the quality of the obtained graphene material and to monitor the carbon concentration in the catalyst substrates. Results show that graphene from each annealing growth process possesses a similar quality, which confirmed the good reproducibility of the method. This technique brings great freedom to graphene growth and applications, and it could be also used for other 2D material synthesis.
  •  
9.
  • Hansson, Josef, 1991, et al. (författare)
  • Bipolar electrochemical capacitors using double-sided carbon nanotubes on graphite electrodes
  • 2020
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 451
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrochemical capacitor (EC) is a key enabler for the miniaturized self-powered systems expected to become ubiquitous with the advent of the internet-of-things (IoT). Vertically aligned carbon nanotubes (VACNTs) on graphite holds promise as electrodes for compact and low-loss ECs. However, as with all ECs, the operating voltage is low, and miniaturization of higher voltage devices necessitates a bipolar design. In this paper, we demonstrate a bipolar EC using graphite/VACNTs electrodes fabricated using a joule heating chemical vapor deposition (CVD) setup. The constructed EC contains one layer of double-sided VACNTs on graphite as bipolar electrode. Compared to a series connection of two individual devices, the bipolar EC has 22% boost in volumetric energy density. More significant boost is envisaged for stacking more bipolar electrode layers. The energy enhancement is achieved without aggravating self-discharge (71.2% retention after 1 h), and at no sacrifice of cycling stability (96.7% over 50000 cycles) owing to uniform growth of VACNTs and thus eliminating cell imbalance problems.
  •  
10.
  • Hansson, Josef, 1991, et al. (författare)
  • Effects of high temperature treatment of carbon nanotube arrays on graphite : Increased crystallinity, anchoring and inter-tube bonding
  • 2020
  • Ingår i: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 31:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal treatment of carbon nanotubes (CNTs) can significantly improve their mechanical, electrical and thermal properties due to reduced defects and increased crystallinity. In this work we investigate the effect of annealing at 3000 degrees C of vertically aligned CNT arrays synthesized by chemical vapor deposition (CVD) on graphite. Raman measurements show a drastically reduced amount of defects and, together with transmission electron microscope (TEM) diffraction measurements, an increased average crystallite size of around 50%, which corresponds to a 124% increase in Young's modulus. We also find a tendency for CNTs to bond to each other with van der Waals (vdW) forces, which causes individual CNTs to closely align with each other. This bonding causes a densification effect on the entire CNT array, which appears at temperatures >1000 degrees C. The densification onset temperature corresponds to the thermal decomposition of oxygen containing functional groups, which otherwise prevents close enough contact for vdW bonding. Finally, the remaining CVD catalyst on the bottom of the CNT array is evaporated during annealing, enabling direct anchoring of the CNTs to the underlying graphite substrate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy