SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2020-2021);pers:(Nilsson Torbjörn 1962)"

Search: WFRF:(Liu Johan 1960) > (2020-2021) > Nilsson Torbjörn 1962

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Enmark, Markus, 1991, et al. (author)
  • A Critical Assessment of Nano Enhanced Vapor Chamber Wick Structures for Electronics Cooling
  • 2021
  • In: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Conference paper (peer-reviewed)abstract
    • The increasing need for high thermal dissipation in small electronic products puts tough requirements on effective cooling solutions. Two of the most effective passive cooling devices in electronics today are vapor chambers and heat pipes. With new advancements in materials science and nanotechnology comes the possibility to further increase cooling capacity and at the same time make devices lighter. This study is a critical assessment on recent progress in the field of nanomaterial enhanced wick structures in vapor chambers and heat pipes. In this paper, nano-enhanced wick structures are divided into five different sub-categories based on material type. Publication trends for the different types of nano-enhanced wicks are studied by plotting them on a timeline. It is found that nanostructured metal wicks is the most studied field in recent years. A plot showing wick performance in terms of superheat temperatures for given heat flux is created to be used for benchmarking of new wick structures when pool boil experiments are carried out. An attempt to find correlation between publication trends, type of wick and performance is done. On the basis of the gathered data it is deemed difficult to find a distinct correlation, this is mainly due to difficulty in comparing performance between different studies, especially when different heat fluxes are used. There is no unambiguous answer to which category of nano-enhanced wicks that should be target for future studies. Graphene coating and pure carbon nanomaterials such as aerogels and graphene foam are still relatively unexplored and believed to have great potential if they can be attached to envelope materials.
  •  
2.
  • Hansson, Josef, 1991, et al. (author)
  • Bipolar electrochemical capacitors using double-sided carbon nanotubes on graphite electrodes
  • 2020
  • In: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 451
  • Journal article (peer-reviewed)abstract
    • The electrochemical capacitor (EC) is a key enabler for the miniaturized self-powered systems expected to become ubiquitous with the advent of the internet-of-things (IoT). Vertically aligned carbon nanotubes (VACNTs) on graphite holds promise as electrodes for compact and low-loss ECs. However, as with all ECs, the operating voltage is low, and miniaturization of higher voltage devices necessitates a bipolar design. In this paper, we demonstrate a bipolar EC using graphite/VACNTs electrodes fabricated using a joule heating chemical vapor deposition (CVD) setup. The constructed EC contains one layer of double-sided VACNTs on graphite as bipolar electrode. Compared to a series connection of two individual devices, the bipolar EC has 22% boost in volumetric energy density. More significant boost is envisaged for stacking more bipolar electrode layers. The energy enhancement is achieved without aggravating self-discharge (71.2% retention after 1 h), and at no sacrifice of cycling stability (96.7% over 50000 cycles) owing to uniform growth of VACNTs and thus eliminating cell imbalance problems.
  •  
3.
  • Hansson, Josef, 1991, et al. (author)
  • Effects of high temperature treatment of carbon nanotube arrays on graphite : Increased crystallinity, anchoring and inter-tube bonding
  • 2020
  • In: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 31:45
  • Journal article (peer-reviewed)abstract
    • Thermal treatment of carbon nanotubes (CNTs) can significantly improve their mechanical, electrical and thermal properties due to reduced defects and increased crystallinity. In this work we investigate the effect of annealing at 3000 degrees C of vertically aligned CNT arrays synthesized by chemical vapor deposition (CVD) on graphite. Raman measurements show a drastically reduced amount of defects and, together with transmission electron microscope (TEM) diffraction measurements, an increased average crystallite size of around 50%, which corresponds to a 124% increase in Young's modulus. We also find a tendency for CNTs to bond to each other with van der Waals (vdW) forces, which causes individual CNTs to closely align with each other. This bonding causes a densification effect on the entire CNT array, which appears at temperatures >1000 degrees C. The densification onset temperature corresponds to the thermal decomposition of oxygen containing functional groups, which otherwise prevents close enough contact for vdW bonding. Finally, the remaining CVD catalyst on the bottom of the CNT array is evaporated during annealing, enabling direct anchoring of the CNTs to the underlying graphite substrate.
  •  
4.
  • Nylander, Andreas, 1988, et al. (author)
  • Degradation of Carbon Nanotube Array Thermal Interface Materials through Thermal Aging: Effects of Bonding, Array Height, and Catalyst Oxidation
  • 2021
  • In: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 13:26, s. 30992-31000
  • Journal article (peer-reviewed)abstract
    • Carbon nanotube (CNT) array thermal interface materials (TIMs) are promising candidates for high-performance applications in terms of thermal performance. However, in order to be useful in commercial applications, the reliability of the interfaces is an equally important parameter, which so far has not been thoroughly investigated. In this study, the reliability of CNT array TIMs is investigated through accelerated aging. The roles of CNT array height and substrate configuration are studied for their relative impact on thermal resistance degradation. After aging, the CNT catalyst is analyzed using X-ray photoelectron spectroscopy to evaluate chemical changes. The CNT-catalyst bond appears to degrade during aging but not to the extent that the TIM performance is compromised. On the other hand, coefficient of thermal expansion mismatch between surfaces creates strain that needs to be absorbed, which requires CNT arrays with sufficient height. Transfer and bonding of both CNT roots and tips also create more reliable interfaces. Crucially, we find that the CNT array height of most previously reported CNT array TIMs is not enough to prevent significant reliability problems.
  •  
5.
  • Zehri, Abdelhafid, 1989, et al. (author)
  • Exploring Graphene Coated Copper Nanoparticles as a multifunctional Nanofiller for Micro-Scaled Copper Paste
  • 2021
  • In: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Conference paper (peer-reviewed)abstract
    • The current development of the electronics system requires capabilities beyond conventional heat transfer approaches. New solutions based on advanced materials are being developed to tackle the current challenges in the development of electronics systems and the nanoscale 2D materials such as graphene are at the centre of the effort to exploit the intrinsic properties of carbon nanomaterials. In this work, we introduce a new concept of graphene-coated copper nanoparticles (G-CuNPs) and explore their multifunctional potential applications in metallic based paste used in electronics. The nanoscale powder was found to present a core/shell structure with the copper particle at its core and a disordered multilayer graphene structure continuously coating its surface. The composition of the particles was analysed, and the presence of the coating was found to provide oxidation protection for the metallic core. Thermogravimetric analysis (TGA) showed an additional role of the G-CuNPs with a reduction effect without the use of an additional reducing agent. Furthermore, due to the combined effect of the size of the particles and the oxidation-free metallic core, Differential Scanning Calorimetry (DSC) analysis revealed a melting depression at temperatures as low as 155 °C. Finally, the mechanical properties of the nanocoating were investigated and the results showed an enhanced ductility at the surface of the particles due to the presence of the multi-layered graphene structure, which might be exploited for powder flow and lubrication effect.
  •  
6.
  • Zehri, Abdelhafid, 1989, et al. (author)
  • High porosity and light weight graphene foam heat sink and phase change material container for thermal management
  • 2020
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 31:42
  • Journal article (peer-reviewed)abstract
    • During the last decade, graphene foam emerged as a promising high porosity 3-dimensional (3D) structure for various applications. More specifically, it has attracted significant interest as a solution for thermal management in electronics. In this study, we investigate the possibility to use such porous materials as a heat sink and a container for a phase change material (PCM). Graphene foam (GF) was produced using chemical vapor deposition (CVD) process and attached to a thermal test chip using sintered silver nanoparticles (Ag NPs). The thermal conductivity of the graphene foam reached 1.3 W m(-1)K(-1), while the addition of Ag as a graphene foam silver composite (GF/Ag) enhanced further its effective thermal conductivity by 54%. Comparatively to nickel foam, GF and GF/Ag showed lower junction temperatures thanks to higher effective thermal conductivity and a better contact. A finite element model was developed to simulate the fluid flow through the foam structure model and showed a positive and a non-negligible contributions of the secondary microchannel within the graphene foam. A ratio of 15 times was found between the convective heat flux within the primary and secondary microchannel. Our paper successfully demonstrates the possibility of using such 3D porous material as a PCM container and heat sink and highlight the advantage of using the carbon-based high porosity material to take advantage of its additional secondary porosity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view