SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2020-2021);spr:eng"

Sökning: WFRF:(Liu Johan 1960) > (2020-2021) > Engelska

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Mengxiong, et al. (författare)
  • Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites
  • 2020
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 12:24, s. 27476-27484
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene-based thermally conductive polymer composites are of great importance for the removal of the excess heat generated by electronic devices. However, due to the orientation of graphene sheets in the polymer matrix, the through-plane thermal conductivity of polymer/graphene composites remains far from satisfactory. We here demonstrate a confined liquid-phase expansion strategy to fabricate highly oriented confined expanded graphite (CEG) aerogels. After being incorporated into epoxy resin (EP), the resulting EP/CEG composites exhibit a high through-plane thermal conductivity (4.14 ± 0.21 W m-1 K-1) at a quite low filler loading of 1.75 wt % (0.91 vol %), nearly 10 times higher than that of neat EP resin and 7.5 times higher than the in-plane thermal conductivity of the composite, indicating that the CEG aerogel has a high through-plane thermal conductivity enhancement efficiency that outperforms those of many graphite/graphene-based fillers. The facile preparation method holds great industrial application potential in fabricating anisotropic thermally conductive polymer composites.
  •  
2.
  • Fu, Yifeng, 1984, et al. (författare)
  • Graphene related materials for thermal management
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
3.
  • Kaindl, Reinhard, et al. (författare)
  • Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates
  • 2021
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 6:50, s. 34301-34313
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer-or foil type substrates. Here, we demonstrate AJP of graphene and single walled CNT (SWCNT) patterns on realistically rugged plasma electrolytic-oxidized (PEO) Al blocks, which are promising heat sink materials. We show that AJP on the rugged substrates offers line resolution of down to similar to 40 mu m width for single AJP passes, however, at the cost of noncomplete substrate coverage including noncovered mu m-sized pores in the PEO Al blocks. With multiple AJP passes, full coverage including coverage of the pores is, however, readily achieved. Comparing archetypical aqueous and organic graphene and SWCNT inks, we show that the choice of the ink system drastically influences the nanocarbon AJP parameter window, deposit microstructure including crystalline quality, compactness of deposit, and inter/intrapass layer adhesion for multiple passes. Simple electrical characterization indicates aqueous graphene inks as the most promising choice for AJP-deposited electrical interconnect applications. Our parameter space screening thereby forms a framework for rational process development for graphene and SWCNT AJP on application-relevant, rugged substrates.
  •  
4.
  • Liu, Hao, et al. (författare)
  • Graphene oxide for nonvolatile memory application by using electrophoretic technique
  • 2020
  • Ingår i: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental work presented here, for the first time using electrophoretic technique to fabricate graphene oxide (GO)-based resistive random access memory (RRAM). By using electrophoretic technique, nonvolatile RRAM devices with Aluminum (Al)/GO/Indium tin oxide (ITO) cross-bar sandwich-like structure were fabricated. The fabricated devices show typical bipolar resistant switching behavior with ON/OFF ratio more than 10, retention time more than 102 s, and transition voltage less than 1.7 V. The switching mechanism for the devices is ascribed to the formation and rupture of the conducting filament induced by the diffusion of oxygen ions. The results show that the electrophoretic technique holds great potential for film manufacturing for RRAM.
  •  
5.
  • Liu, Hao, et al. (författare)
  • Thermally Conductive Graphene Film/Indium/Aluminum Laminated Composite by Vacuum Assisted Hot-pressing
  • 2020
  • Ingår i: 2020 21ST INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT). - 9781728168265
  • Konferensbidrag (refereegranskat)abstract
    • In order to meet the ever more demanding requirements of modern thermal management with the increasing high power density, an easy-fabricated laminated graphene film/indium/aluminum (GF/In/Al) composite was developed. The GF was fabricated through assemble graphene oxide (GO) sheets in a layer-by-layer structure and then subjected to graphitization process at high temperature as well as press forming process. The fabricated GF exhibits ultrahigh in-plane thermal conductivity together with good tensile strength. The GF/In/Al laminated composite was fabricated by hot-pressing indium coated GF and Al layers in vacuum environment. The indium layer was easily coated onto the GF due to its low melting point along with good flowing property. The thermal resistance measurements show that the indium bonding possess greater preponderance of reducing contact resistance than without bonding material and thermal conductive adhesive (TCA) bonding, because indium layer could fill the gap between GF and Al layers, and provide more stable connection. The results show that the obtained laminated composite could be potentially used in the thermal management of high power systems.
  •  
6.
  • Liu, Ya, 1991, et al. (författare)
  • A Novel Graphene Quantum Dot-Based mRNA Delivery Platform
  • 2021
  • Ingår i: ChemistryOpen. - : Wiley. - 2191-1363. ; 10:7, s. 666-671
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decades, there has been growing interest in using therapeutic messager RNA (mRNA) together with drug delivery systems. Naked, unformulated mRNA is, however, unable to cross the cell membrane and is susceptible to degradation. Here we use graphene quantum dots (GQDs) functionalized with polyethyleneimine (PEI) as a novel mRNA delivery system. Our results show that these modified GQDs can be used to deliver intact and functional mRNA to Huh-7 hepatocarcinoma cells at low doses and, that the GQDs are not toxic, although cellular toxicity is a problem for these first-generation modified particles. Functionalized GQDs represent a potentially interesting delivery system that is easy to manufacture, stable and effective.
  •  
7.
  • Liu, Ya, 1991, et al. (författare)
  • Graphene based thermal management system for battery cooling in electric vehicles
  • 2020
  • Ingår i: Proceedings - 2020 IEEE 8th Electronics System-Integration Technology Conference, ESTC 2020.
  • Konferensbidrag (refereegranskat)abstract
    • In this work, a graphene assembled film integrated heat sink and water cooling technology was used to build an experimental set-up of a thermal management system to demonstrate the possibility to achieve efficient cooling of the propulsion battery in electric vehicles. The experimental results showed that the temperature decrease of a Li-ion battery module can reach 11°C and 9 °C under discharge rates as of 2C and 1C, respectively. The calculated thermal resistance of the graphene based cooling system is about 76% of a similar copper based cooling system. Surface modification was carried out on the graphene sheet to achieve a reliable bonding between the graphene sheet and the battery cell surface. This work provides a proof of concept of a new highly efficient approach for electric vehicle battery thermal management using the light-weight material graphene.
  •  
8.
  • Manchili, Swathi Kiranmayee, 1987, et al. (författare)
  • Effect of Nanopowder Addition on the Sintering of Water-Atomized Iron Powder
  • 2020
  • Ingår i: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. - : Springer Science and Business Media LLC. - 1073-5623. ; 51:9, s. 4890-4901
  • Tidskriftsartikel (refereegranskat)abstract
    • A promising method of improving the densification of powder metallurgical steel components is to blend nanopowder with the otherwise typically used micrometre-sized powder. The higher surface-to-volume ratio of nanopowder is hypothesized to accelerate the sintering process and increase the inter-particle contact area between the powder particles. This is supposed to enhance the material transport and improve the densification. In the present investigation, water-atomized iron powder (− 45 μm) was mixed separately with pure iron and low-carbon steel nanopowder, each at a ratio of 95 to 5 pct. These powder mixes were compacted at different pressures (400, 600 and 800 MPa) and then sintered at 1350 °C in a pure hydrogen atmosphere. The sintering behavior of the powder blend compacts was compared to that of the compact with micrometre-sized powder only. Densification commenced at much lower temperatures in the presence of nanopowder. To understand this, sintering at intermittent temperatures such as 500 °C and 700 °C was conducted. The fracture surface revealed that the nanopowder was sintered at between 500 °C and 700 °C, which in turn contributed to the densification of the powder mix at the lower temperature range. Based on the sintering experiments, an attempt was made to calculate the activation energy and identify the associated sinter mechanism using two different approaches. It was shown that the first approach yielded values in agreement with the grain-boundary diffusion mechanism. As the nanopowder content increased, there was an increase in linear shrinkage during sintering.
  •  
9.
  • Zhang, Yong, 1982, et al. (författare)
  • Properties of Undoped Few-Layer Graphene-Based Transparent Heaters
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In many applications like sensors, displays, and defoggers, there is a need for transparent and efficient heater elements produced at low cost. For this reason, we evaluated the performance of graphene-based heaters with from one to five layers of graphene on flexible and transparent polyethylene terephthalate (PET) substrates in terms of their electrothermal properties like heating/cooling rates and steady-state temperatures as a function of the input power density. We found that the heating/cooling rates followed an exponential time dependence with a time constant of just below 6 s for monolayer heaters. From the relationship between the steady-state temperatures and the input power density, a convective heat-transfer coefficient of 60 W·m−2·°C−1 was found, indicating a performance much better than that of many other types of heaters like metal thin-film-based heaters and carbon nanotube-based heaters.
  •  
10.
  • Zhao, Changhong, 1982, et al. (författare)
  • Synthesis of graphene quantum dots and their applications in drug delivery
  • 2020
  • Ingår i: Journal of Nanobiotechnology. - : Springer Science and Business Media LLC. - 1477-3155. ; 18:1
  • Forskningsöversikt (refereegranskat)abstract
    • This review focuses on the recent advances in the synthesis of graphene quantum dots (GQDs) and their applications in drug delivery. To give a brief understanding about the preparation of GQDs, recent advances in methods of GQDs synthesis are first presented. Afterwards, various drug delivery-release modes of GQDs-based drug delivery systems such as EPR-pH delivery-release mode, ligand-pH delivery-release mode, EPR-Photothermal delivery-Release mode, and Core/Shell-photothermal/magnetic thermal delivery-release mode are reviewed. Finally, the current challenges and the prospective application of GQDs in drug delivery are discussed.[Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy