SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Johan 1960) srt2:(2020-2021);srt2:(2020);pers:(Wang Nan)"

Search: WFRF:(Liu Johan 1960) > (2020-2021) > (2020) > Wang Nan

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fu, Yifeng, 1984, et al. (author)
  • Graphene related materials for thermal management
  • 2020
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
2.
  • Liu, Hao, et al. (author)
  • Thermally Conductive Graphene Film/Indium/Aluminum Laminated Composite by Vacuum Assisted Hot-pressing
  • 2020
  • In: 2020 21ST INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT). - 9781728168265
  • Conference paper (peer-reviewed)abstract
    • In order to meet the ever more demanding requirements of modern thermal management with the increasing high power density, an easy-fabricated laminated graphene film/indium/aluminum (GF/In/Al) composite was developed. The GF was fabricated through assemble graphene oxide (GO) sheets in a layer-by-layer structure and then subjected to graphitization process at high temperature as well as press forming process. The fabricated GF exhibits ultrahigh in-plane thermal conductivity together with good tensile strength. The GF/In/Al laminated composite was fabricated by hot-pressing indium coated GF and Al layers in vacuum environment. The indium layer was easily coated onto the GF due to its low melting point along with good flowing property. The thermal resistance measurements show that the indium bonding possess greater preponderance of reducing contact resistance than without bonding material and thermal conductive adhesive (TCA) bonding, because indium layer could fill the gap between GF and Al layers, and provide more stable connection. The results show that the obtained laminated composite could be potentially used in the thermal management of high power systems.
  •  
3.
  • Liu, Ya, 1991, et al. (author)
  • Graphene based thermal management system for battery cooling in electric vehicles
  • 2020
  • In: Proceedings - 2020 IEEE 8th Electronics System-Integration Technology Conference, ESTC 2020.
  • Conference paper (peer-reviewed)abstract
    • In this work, a graphene assembled film integrated heat sink and water cooling technology was used to build an experimental set-up of a thermal management system to demonstrate the possibility to achieve efficient cooling of the propulsion battery in electric vehicles. The experimental results showed that the temperature decrease of a Li-ion battery module can reach 11°C and 9 °C under discharge rates as of 2C and 1C, respectively. The calculated thermal resistance of the graphene based cooling system is about 76% of a similar copper based cooling system. Surface modification was carried out on the graphene sheet to achieve a reliable bonding between the graphene sheet and the battery cell surface. This work provides a proof of concept of a new highly efficient approach for electric vehicle battery thermal management using the light-weight material graphene.
  •  
4.
  • Zhao, Changhong, 1982, et al. (author)
  • Synthesis of graphene quantum dots and their applications in drug delivery
  • 2020
  • In: Journal of Nanobiotechnology. - : Springer Science and Business Media LLC. - 1477-3155. ; 18:1
  • Research review (peer-reviewed)abstract
    • This review focuses on the recent advances in the synthesis of graphene quantum dots (GQDs) and their applications in drug delivery. To give a brief understanding about the preparation of GQDs, recent advances in methods of GQDs synthesis are first presented. Afterwards, various drug delivery-release modes of GQDs-based drug delivery systems such as EPR-pH delivery-release mode, ligand-pH delivery-release mode, EPR-Photothermal delivery-Release mode, and Core/Shell-photothermal/magnetic thermal delivery-release mode are reviewed. Finally, the current challenges and the prospective application of GQDs in drug delivery are discussed.[Figure not available: see fulltext.]
  •  
5.
  • Wang, Nan, 1988, et al. (author)
  • Improved Interfacial Bonding Strength and Reliability of Functionalized Graphene Oxide for Cement Reinforcement Applications
  • 2020
  • In: Chemistry - A European Journal. - : Wiley. - 1521-3765 .- 0947-6539. ; 26:29, s. 6561-6568
  • Journal article (peer-reviewed)abstract
    • Poor bonding strength between nanomaterials and cement composites inevitably lead to the failure of reinforcement. Herein, a novel functionalization method for the fabrication of functionalized graphene oxide (FGO), which is capable of forming highly reliable covalent bonds with cement hydration products, and therefore, suitable for use as an efficient reinforcing agent for cement composites, is discussed. The bonding strength between cement and aggregates was improved more than 21 times with the reinforcement of FGO. The fabricated FGO also demonstrated many important features, including high reliability in cement pastes, good dispersibility, and efficient structural refinement of cement hydration products. With the incorporation of FGO, cement mortar samples demonstrated up to 40 % increased early and ultimate strength. Such results make the fast demolding and manufacture of light constructions become highly possible, and show strong advantages on improving productivity, saving cost, and reducing CO2 emissions in practical applications.
  •  
6.
  • Zehri, Abdelhafid, 1989, et al. (author)
  • High porosity and light weight graphene foam heat sink and phase change material container for thermal management
  • 2020
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 31:42
  • Journal article (peer-reviewed)abstract
    • During the last decade, graphene foam emerged as a promising high porosity 3-dimensional (3D) structure for various applications. More specifically, it has attracted significant interest as a solution for thermal management in electronics. In this study, we investigate the possibility to use such porous materials as a heat sink and a container for a phase change material (PCM). Graphene foam (GF) was produced using chemical vapor deposition (CVD) process and attached to a thermal test chip using sintered silver nanoparticles (Ag NPs). The thermal conductivity of the graphene foam reached 1.3 W m(-1)K(-1), while the addition of Ag as a graphene foam silver composite (GF/Ag) enhanced further its effective thermal conductivity by 54%. Comparatively to nickel foam, GF and GF/Ag showed lower junction temperatures thanks to higher effective thermal conductivity and a better contact. A finite element model was developed to simulate the fluid flow through the foam structure model and showed a positive and a non-negligible contributions of the secondary microchannel within the graphene foam. A ratio of 15 times was found between the convective heat flux within the primary and secondary microchannel. Our paper successfully demonstrates the possibility of using such 3D porous material as a PCM container and heat sink and highlight the advantage of using the carbon-based high porosity material to take advantage of its additional secondary porosity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view